US009336143B1

a2z United States Patent (10) Patent No.: US 9,336,143 B1
Wallace et al. (45) Date of Patent: May 10, 2016
(54) INDEXING A DEDUPLICATED CACHE 8,527,544 Bl 9/2013 Colgrove et al.
SYSTEM BY INTEGRATING FINGERPRINTS 8,782,348 B2 7/2014 Eddy et al.
OF UNDERLYING DEDUPLICATED 20110119442 Al 52011 Haines et ai
STORAGE SYSTEM 2011/0307683 Al 12/2011 Spackman
2013/0151802 Al 6/2013 Bahadure et al.
(71) Applicant: EMC Corporation, Hopkinton, MA 2013/0262805 Al* 10/2013 Zhengetal. 711/162
(Us) 2013/0290277 Al 10/2013 Chambliss et al.
(72) Inventors: Grant R. Wallace, Pennington, NJ (US); OTHER PUBLICATIONS
Frederick Douglis, Basking Ridge, NJ Non-Final Office Action, U.S. Appl. No. 14/038,687, dated Dec. 8,
(US); Philip N. Shilane, Yardley, PA 2014, 8 pages.
(US); Hyong Shim, Basking Ridge, NJ Non-Final Office Action, U.S. Appl. No. 14/038,665, dated Mar. 9,
(US); Stephen Smaldone, Monroe 2015, 10 pages.
Township, NJ (US) Chen, Feng, et al., “CAFTL: A Content-Aware Flash Translation
Layer Enhancing the Lifespan of Flash Memory based Solid State
(73) Assignee: EMC Corporation, Hopkinton, MA Drives”, 2011, 14 pages.
(as) Feng, Jingxin, et al., “A Deduplication Study for Host-side Caches in
))))) Virtualized Data Center Environments”, 2013, 6 pages, IEEE.
(*) Notice: Subject. to any dlsclalmer,. the term of this (Continued)
patent is extended or adjusted under 35
US.C. 154(b) by 204 days. Primary Examiner — Baboucarr Faal
(21) Appl. No.: 14/038,694 (74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP
(22) Filed: Sep. 26, 2013
57 ABSTRACT
(1) Int. Cl. A computer-implemented method for indexing content stored
GOG6F 12/00 (2006.01) in a cache memory device is disclosed. The method starts with
Go6l’ 12/08 (2016.01) maintaining a file index having a plurality of extent entries,
Go6r 12/12 (2016.01) each extent entry corresponding to one of a plurality of file
(52) US.CL extents stored in a cache memory device that caches data
CPC ... GO6F 12/0808 (2013.01); GO6F 12/121 stored in a persistent storage device of a storage system. The
(2013.01) method continues with maintaining a fingerprint index hav-
(58) Field of Classification Search ing a plurality of fingerprint entries, each mapping a finger-
None print to a data region of a file indexed in the file index, wherein
See application file for complete search history. each fingerprint indexed in the fingerprint index is retrieved
from metadata stored in the persistent storage device of the
(56) References Cited storage system when one or more corresponding data chunks

U.S. PATENT DOCUMENTS

7,747,584 Bl 6/2010 Jernigan
8,131,924 Bl 3/2012 Frandzel et al.
8,275,935 B2 9/2012 Suzuki

were accessed, and deduplicating and accessing the file
extents stored in the cache memory device using the file index
and the fingerprint index.

22 Claims, 31 Drawing Sheets

| Receive A Request To Read A File Block. |/ 802

1

| Check File Index Against The Request. I/ 904

208
Read Cache Based on
the Found File Index.

Fetch A Fingerprint From The Storage For The 910
Read.

1

| Check Fingerprint Against The Fingerprint Index. I/ 912

916
Read Cache Based on the
Found Fingerprint Index.

| Check Storage For The Request.

|/91s

US 9,336,143 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Huang, Wen-Tzeng, et al., “A Compression Layer for NAND Type
Flash Memory Systems”, 2005, 6 pages, IEEE.

Kim, Jonghwa, et al., “Deduplication in SSDs: Model and Quantita-
tive Analysis”, 2013, 12 pages, IEEE.

Makatos, Thanos, et al., “Using Transparent Compression to Improve
SSD-based I/O Caches”, Apr. 13-16, 2010, 14 pages, ACM, Paris,
France.

Mao, Bo, et al.,, “SAR: SSD Assisted Restore Optimization for
Deduplication-based Storage Systems in the Cloud”, 2012, 10 pages.

Saxena, Mohit, et al., “FlashTier: a Lightweight, Consistent and
Durable Storage Cache”, Apr. 10-13, 2012, 14 pages, ACM, Bern,
Switzerland.

Yim, Keun S., et al., “A Flash Compression Layer for SmartMedia
Card Systems”, vol. 50, No. 1, Feb. 2004, 6 pages, IEEE Transactions
on Consumer Electronics.

Non-Final Office Action, U.S. Appl. No. 14/038,665, dated Nov. 4,
2014, 10 pages.

Notice of Allowance, U.S. Appl. No. 14/038,668, dated Nov. 14,
2014, 9 pages.

Non-Final Office Action, U.S. Appl. No. 14/038,699, dated Jan. 14,
2015, 11 pages.

* cited by examiner

US 9,336,143 B1

Sheet 1 of 31

May 10, 2016

U.S. Patent

507 i w0
wun ebelays sbeItrS 1un ebeloig
T L 41
s3(00 ElRQ ril sj09lqO ejeq
80In8(
T Aowsiy T
BIEPEISI ERR0) BIEPRIS
ocl
<«
I T ===~ -
_ auibug sbeio)g uoneoidnpag
IIIIIII 4—————=——=
901 =
9Ll
ok xapu| 2|l
JusLisbBeuepy ayae)
I~ ey I_ —
| xepui(dd) | S
I wudie mlc 1 Jabeuep] ayoen

It

Jabeuepy aji4

I "OId

00}

20t
Jusig

101
Wl

US 9,336,143 B1

Sheet 2 of 31

May 10, 2016

U.S. Patent

¢ 'Old

20¢ abeiig ysiq (pajearidnpaq)

F0¢ siauleuo)

90¢ sediay 8|4

F4¥4
(SNIM) sHun JoIAT-BJuAL

07 ((ass) eauq svess piog “69)
B0INa(] AIOLa Byoe)

¥ig
8|npoyy uonoaljos) abegien)

(44
ayor) adpay

i

454

022 (INvY) Aowspy $$390y Wopuey

444
$01pU| 8YoRD

Jabeuepy syoe) -

US 9,336,143 B1

Sheet 3 of 31

May 10, 2016

U.S. Patent

"8ydeD 8yL U] PaJolS
usag SeH 1uaIxg ereq 8yl 1ey] Buuiwisiag
0] asuodsay U] Juaixg ejeq pelois

Jayjouy UIIAA JUSIXT BleQ YL 9)e100ssy

|

|ayaen
8] u| palois sjuldisbul{ 1suieby julidiabulg
sy Buiyojey Ag syoe) sy uj palois

usag seH 1us)xg Bl 8yl JoYIdYAA BullLIeIe(

!

ueIXg ayl 1o
1UsLOoN 8] UQ posegq uldiebul{ v 8)elsusn

90¢ — |

Jusix3 ay | Bunesndnpaq Buipnjoul syoeD uj
1senbay ¥o0|g eleq ay] Jo- Jusixg eleq syoe)D

i

0€ — |

‘weIsAg 8beIOIS VY JO 821A8(]
abelolg v Ul %20|g 3j1d 8Y 1 1O SS90V SpIAOId

i

zZ0¢e —

Blld V UUAA PRJBIDOSSY
320|g BB Y BuIsssa0y 104 159nbay v aAI809y

US 9,336,143 B1

Sheet 4 of 31

May 10, 2016

U.S. Patent

uoIssaidwon

¥ 'Old

¥0F $yuny) 90%

s e
/ /
;

OF SYUNYD

207 abei0)s ysiq (pajeandnpaq)

0y SYUNYY

ZIY (SN Shun 101A3-8IUAA PESOID

01v ((ass) eauq e1@is pios “68)

201n8(Aowspy syoen

747
Sju8IXJ passaldwo)

74z
Sju8xJ passaldwo)

sN3am 0} Buioed

027 Wy Ul (N3AN) hun 101A3-8Jupp usdO

(744
" ue3
passaidwon

4%
Ju8)X] pessaldwon

US 9,336,143 B1

Sheet 5 of 31

May 10, 2016

U.S. Patent

G "Old

‘uoneao ebelols
ay] o] udisbuiq4 ay| depy puy xapy| ulidiabui4
ayl 10 Anug uudiabuiq v up Juidiabulq sy Wesu|

"yole JON seoq uLidiabui ay]) ayoen
8y JO uoneosoT abeiolg V U] 1USIX Ble(8y 8J01S

+

"xopu| wudiabuiq sy uj yorepy
v SeH udiabui4 ay] 4 Aug uudiabu4 Buiyoie
W WOJ4 pauIelqO ayoed ay] 1O uoneoo abeiolg v
UHAA JuSIx3 Byeq 8y BuiAjiuspl Jayuspl v S)eloossy

+

"aUoED 8y U| PaIOIS
useg seH 1uaIx3 ele 8yl JaYIBUAA sulwleeg o]
wudiebui4 sy uQ paseg xepu| judiabui4 v yoiesg

i

z0g —

"JUSIXg eieq oy Buiyoes 104 1senbay v Buiaieay 0]
asuodsay u| usIxg eleq Y Jo4 1uldiabuly v a1elousD

US 9,336,143 B1

Sheet 6 of 31

May 10, 2016

U.S. Patent

9 'OId

'Xspu| 8|4 syl u|
Jaimuspl Jey0 eyl buiyoey Anug o)i4 buipuodssiion
Vv U] pe1edipu| S| 1ey| uoieoao ebeloig Jsyiouy
wol4 syse 8yl WolH jusixg eieq JeyiQ syl aAsuay

+

usxg
BlB(] PUODSS 8y peay 0] 1senbay Jayiouy Bulaiadey
0] asuodsay U] usix3 eyeq Jeyiouy BulAyusp)
Jslnusp| Jsylouy UQ paseg Xspu| 8|i4 8] yalesg

+

‘uoljeoo 9be.ois ay| o] Buiddepy
Jaynuep| syl BuineH xapu| 8|4 v 4O AUz 814 v Masy|

US 9,336,143 B1

Sheet 7 of 31

May 10, 2016

U.S. Patent

Vv.'9ld
| FAZRUCE R
sz1g uossaidwon - — |] AL W Vi7i e
850 314 0seq - sopeeH | | sepesH nam
dd- P 9% Nam

WEREETNNVEINE = bl

\

071 ((SS) 8auq @S pijog “6a)
8a1neq Alowapy ayoe)

%97 Aeay (NY7) @sn-Apusday-1ses

sneis -~ 7
{j uopessusny - 7
Tamainug 7

3ZIS718s)JO NIM -
10]1B20T (1IM Yo -
di-
AUIEpl 44 -7

¥GZ xapul d4

TG x3pul d4

GZ xopu|
{d4) yundiabui4

Y07 Juswa|3 xspu| <

207 Jusws|3 xspu| <

[
Anu3g aeandng

9¢/ Au3 sseg

¥el
Anu3g aeandng

—

- @l uonessuas) -
9ZISIeSHO NAM -
1018907 NIM 8yoe) -

Z¢] Anu7 eseg

0EZ xapu| 8li4

<1880 'SIPUBH BJi4> -
“Xnug sjedndng
92/$19810 NIM -

J10J8007 NIM Byoe -
43S0 ‘SIpUBH 914> -
T~— U7 s%eg

US 9,336,143 B1

Sheet 8 of 31

May 10, 2016

U.S. Patent

9. 'Oid

797 Aeary (NY1) 8sn-Apusosy-jses

8z15 uoissardwon -
JesO 8li esed -
dd-

TopesH UaXy . - 1

\

[ZRCCAC I
AA| vl 71 e
JopesH | | JopesH NIM
[9vZ NIm

OvZ ((ass) enuq ajess pijos “6s)
201meQ Alowspy ayoe)

—

smgs ny1- - L7
q| uonessuse) - 7
MamIed g -~

9ZISI9SHO NIAM -
1018007 NIM ayoe) -
dd-
AU Xepu 4y -~

¥SZ xapu| d4

TG Xapu| d4

0GZ xapu|
(dd) yuudiebuiq

07 JUsLUB(X8pu| <

707 uswa|g xspu| <

8¢l
Anu3z seaidng

9t/ Aug eseg fe—— 27 fnug -
07711 Mg
A-="" Q) uopeseuss -
. 8Z1S5119S0 NIM -
€1 J0Je307 N3M 8YdeQ -

Anu3 91e2)dng

<J9SYO ‘s|pueH aji4> -
RUg Seonang

7¢7 Anug eseg

9ZIS118SHO NIAM -
1018907 NIM 8U2ED -
<19syQ ‘e|pueH sji4> -

0€Z xspu| 9|l

-l AU aseg

US 9,336,143 B1

Sheet 9 of 31

May 10, 2016

U.S. Patent

08 'Old

Jewlo Anug xapu| juudisbulq

828 (saAg ¥) 82IS
U2)x3 passaldwon

928 (sa1hg) 18s80 NAM

28
(sa1Ag ¥) 1018007 NIM BUoED

728 (seyhg 0z) Juudisbul4

g8 Old

Jew,o Anu3 e1eandng xspuj 814

818 (sa1hg 7)
| uonessuan)

378 (salAg) 8215
U213 passasdwon

918 (sa1fg) 18810 NIAM

718
(sa1Ag) 1018007 NIM 8Y0ED

718 (saihg
91) <1810 ‘SIpuBH 3|I4>

V8 'Old

Jeuno Aju3 eseg xapu| 9|14

808 (sa1hg v) 8215
U213 passalidwon

908 (sa1hg ¥) 1840 NIAM

708
(s91Ag ¥) 1018007 NIM 8YoED

208 (saihg
91) <39S0 ‘SIpueH ajl4>

US 9,336,143 B1

Sheet 10 of 31

May 10, 2016

U.S. Patent

6 'Old

216 —1 ‘1senbay ay] 104 abelioig ¥o8yD

ON
S3A

4%

xapu| judiabui4 puno4
ay) uo pasegq ayoe peay

a6~

716 —1 "xopu| diobui4 ay| 1suieby juldiabuiq ¥osyd

+

‘pesy
0L6 — | syl Jo4 abeio)s sy wou uudiabul] v yoje4
ON
S3A 'Xapu| 8]i4 puno4 syl
906 uo paseg ayoe) peoy
206 7~
06 —1 "1sanbay ay] 1suieby xapu| 8|14 ¥98yD

+

206 e)}20|g 3|14 ¥ peaYy 0] 15anbay v aAI9d9y

US 9,336,143 B1

Sheet 11 of 31

May 10, 2016

U.S. Patent

0l "OId

"Xapu| 8|4 sy} 0} Anug ayeoldn(e Jasu|

N

éayoen
uljua)x3 8y

rA]

‘Aljug eseq sy pajage] puy
xapu| 814 8y o] Aju3 uy Hasu|

0LoL —

JusIx3 8yl JO 44 ¥98YD

f

8001 — |

‘sbeloig
aydoed oy o] UsHLIAA 8g O] S| Jusixd Jsyouy

/v_‘or

"uoI1ED0T BYJRY
8yl o1 Aug d4 v uiod
pPuy xapu] 44 8yl O1 PPY

900L — | puy xopu| (d4) juudieBuiq oyl o1 ppy

L3

"uoeoo ayoeD 8yl 0] Ajug d4 v uiod

f

¥00L —]

‘Aug aseqg
SY pajege puy xapu| aji4 8yl o] Ajug uy Lasy|

f

Z0oL —

‘0beI01S BYoRD Y O] USNLAA 1S U8IXT Uy

N

US 9,336,143 B1

Sheet 12 of 31

May 10, 2016

U.S. Patent

Vil "Old

¢ NIM

|

.
TNIm |7
.

<znmw HN T:T INVY -

VY Ul n3m uadQ

¢CTT sAl uohelsus D NIM

_ -

US 9,336,143 B1

Sheet 13 of 31

May 10, 2016

U.S. Patent

dall "Old

(400"
9yoe) @ss ul (snam)

| SHUN 1DIAT-31IM PaSOP)

wNiEl Tiz T

ZcITsalu uss NIaMm

o

\\

YOTT
INVY Ul N3 uado

US 9,336,143 B1

Sheet 14 of 31

May 10, 2016

U.S. Patent

It Old

C0TT
ayaed ass u! (snam)

SHUN 121A3-92 M P3SO[D

T T T

ZTTT sl uolessus 9 NIM

U.S. Patent May 10, 2016

N
- \\\\\\\1
S 3 M
T 5 RH=®R
& c X N

S

R
<t N N
i R
| \“ \ N
| B

Q

\ﬁ‘

\.§ N

& R \\Q\ o
NMIHH*RHHhRnw B —
\E E .o
M 5 ~

L—
[11])

a0 o~
k=T
i

\\\&): \Q
.

[}

T o
(=
-
[

/
//

Sheet 15 of 31

US 9,336,143 B1

WEU 1

WEU 2

NS :\ R ..
R N N N N 3 N N
AREITINGY | [FRTTIERN N N
N N \ \\\\\\\\\\-
e

Ny \‘

\ y &b\\\

Closed Write-Evict Units

SSD Cache

(WEUs) in

FIG. 11D

U.S. Patent May 10, 2016 Sheet 16 of 31 US 9,336,143 B1

DI SR
—T —— RN
\ \\\\\\ nnn
&\\ R IR

Y s AN

\\\\\\
\\\
E
:\\

FIG. 11E

SSD Cache
1102

Closed Write-Evict Units

(WEUSs) in

US 9,336,143 B1

Sheet 17 of 31

May 10, 2016

U.S. Patent

411 "Old

Z0TT
3yoed dss ut (snam)
S1UN 1IAT-2IAN PSO[D

T Tir T

U.S. Patent May 10, 2016 Sheet 18 of 31 US 9,336,143 B1

N
x N
3 IR
e
= - \ N
v W
= N N
[W\ Y
N IR
I ~ oM
o} o] 2
s = 2

FIG. 11G

SSD Cache
1102

(WEUs) in

Closed Write-Evict Units

US 9,336,143 B1

Sheet 19 of 31

May 10, 2016

U.S. Patent

HLl "Old

Z0TtT
ayaed ass
SHUN 1IIAT-2

ut (sN3m)
WA PSO|D

e Tt T

US 9,336,143 B1

Sheet 20 of 31

May 10, 2016

U.S. Patent

¢l Old
oLzl — ‘uex3g ssaudwooun
vizl P ‘eleq usix3 s1eplleA
z1zL — "8yoe 9] woi Jusixg peay

+

X8pU| 8|14 U] 1930ng peieldossy syl Ul
0121 — | uoisjon Ajusp| 01 SNEA YSBH PU0ISS W 95

+

189nbay 2y
Q021 — | uQ paseg uonouN4 YseH puodsss vy oje|nojesn

*

"X9pU| 9|14 U] 184oNg po1e1dossy
9021 — | puiq4 o1 A3y SV SNjEA USEH 1814 ¥ 95N

i

"1sonbay
Y021 — | eyl uQ peseg uonoun4 yseH isil4 v a1ejnajen

+

FAVYAD —1 »00|g eleq V¥ pesy 01 Hmwjdmm Y ©AI809Y

US 9,336,143 B1

Sheet 21 of 31

May 10, 2016

U.S. Patent

€l 'Old

"UdIXg ssa4dwodun

vLelL —]
ZLeL — ‘ele(jusixy alepllep
0LE} — ‘ayorD 8y WOl Jua1Xg peay

+

80€L — |

"Xopu| 8|14 U 19%0Ng PaJeIoossy ay | U] SUOIS!|j0D

Aljuap| oL anjeA 9SO alpueH ajid [Ind as

90€L — | puiq 0] Aoy SV ON|eA UseH 18114 V 9S

f

"Xapu| 8|14 U] 19¥%oNng pejeloossy

i

ogL — |

1s9nbey
Yl UQ paseg uonoun4 YseH 1814 y 918|nojeo)

+

zogL —

"90|g Ble V¥ PESY 0] 158nbay ¥ 9AI829Y

US 9,336,143 B1

Sheet 22 of 31

May 10, 2016

U.S. Patent

14|
[ThrT g |-
(@z)ezisuoissaidwon - — | ||~ & A[¥#F1 Irvh e
(991) 19840 9|14 8seg - Jepesy JapesH NIM
_(@dd- | | LT 5 N3M
JepesH URIXg - 4T —_ “R
PESHIISII OFFT ((aSs) Aug s1eig pios “69)
201ne(] Alowis|y syoeD
|
|
|
gl
FOV] Juswsa|3 xapu| < A3 sreondng
FOPT Aeiy (nd1) esn-Apusosy-ises POy BRI XPUl

= JFT Anug eseg
(gy) 8215 30sHO NIM - : -7 (92) qjvonessuss -
(gv) Jojeo0 NIMBYRD - | TCTT Xepu| dS fet— ((ap) 921518840 NIM -
(902) d4 - T (gp) 1018007 NIM BY0ED -
AUI XU -) fnug aeogdng [(B9H) <I9SHO BIPuBH 813> -
g : Z07 T, JuSWs|3 Xapu| < . _ AU EedNang
~7 7 (@p) ez1S19S40 NAM -
T5VT xopu| d ZTFT Aiug oseq (ap) 101907 NIM 8YOED -
(ar) (zuseH)
OSFT xapuy|] ~~._esl0 »m_n%_._ 8ll4> -
(d4) Juudiabui4 OSFT Xopu| 9|14 ~~. ug sseg

US 9,336,143 B1

Sheet 23 of 31

May 10, 2016

U.S. Patent

(071
0l97 [era]

(17
3UQ oA

(1)
3UQ [9A37

val 9ld
(01) (071 (07)
0Ja7 [ane] 0197 [8A8T] 0l97 [or97]
L (1) (17) (1) ...
auQ [PAa auQ [9A97 auQ A9
(z1) L f4) (z1
OM] [9AS7 OM] [9AS7 e OM] [9AS7
(€1)] (1)] ()
9aly] [aAe 99ly] [one 39ly] [ore7
(1) (1) 3
Ino4 |aAaT Ino4 |aAaT Ino4 |aAaT
3
BAl] [9A97

¢0sl

Bled alld Ny

(07
0J87 [aAe]

US 9,336,143 B1

Sheet 24 of 31

May 10, 2016

U.S. Patent

(e1ep 34 [en1oe ay1) Junyd g

(g 87T ueds) suswidas 11

(ueds gIN #9) sIusW8aS 71

(PIYy3 jo ueds),zTS
SI ueds JuBWIZas 47

9 [9A97 d1

9|pueH 9|4

g%l 'Old

€dd ! Tdd ! Gdd

juswdas dydoj

1uawgag Jadng

A

9zIS | Joy Jadng

US 9,336,143 B1

Sheet 25 of 31

May 10, 2016

U.S. Patent

/91 19SHO PUE d4 yim EJe(0 358N

91 "OId

8ZIS uoissaldwooun -
8z1S uoissaidwo?) -

J9SHO 84 aseq - | ==

JapesH JUBIXg . A4

\

bay waysAg abeiois pejeondnpaq
A7 RN
¥9l 791 .
_ L8P | | sepeaH NAm
9%aF NIm

0F9F ((0SS) aAuq @1els pijos “6-8)
80Ine(q AIoWs| 8Yde)

7997 Aeny (NY1) esn-Apusoey-ises

1eso 9l -~
alpueH a4 -
d411-

¥SOF x3pul d4 11

AT XepU dd -

€591 Xopu| d4 11

G971 xapu| (d4) uudisbuiy |7

7097 Jusis|3 xapu|

<

€09 JusWa|3 XSpu| 4

geal
Aug eendng

9£9} Anu3 sseg

veal ,
A3 seandng 7 dd 11HoYs -
9ZIS J9sHO NIAM -

N

0€91 xepuj 314

>

1018207 NIM 8YoeS -
<J9slO
‘3IPUEH 3Ji4> -

7297 Anug eseg —

AU eseg

0207 18840 |fpueH 9|4
Buisn “6°8) 1senbay wis)sAS o)1 ylomsN

b

US 9,336,143 B1

Sheet 26 of 31

May 10, 2016

U.S. Patent

da.ll 'Old
9Lzl VI cH1
¢ Juno) g 0 ‘uno) g | Juno)
18X0 d 13%0 d LVX0 d
V.l "Old
9071 YOIl 201
0 ‘uno) g 0 ‘uno) g | Juno)
£8X0 d 13%0 d LVX0 d

US 9,336,143 B1

Sheet 27 of 31

May 10, 2016

U.S. Patent

8L '9Old

zLeL —|

AU MaN 8y 14esu| puy 1unog uonealidng
189m0 8UL WIA AU 8yl sAoway

‘auQ Ag 1unon uoneoldng s} eonpay puy Aijug

018l — | posn us2ay 1SO SUL 99 O1 N1 SUL SAON
‘Allug maN oy uesu|
puy AU N1 9YL I
2081
N
‘'seliug J8Ylo JO
yogL —] SWned eyl isueby Anu3g (Ny1) pesn-Apusosy
-18B37 9y 1O 1uno) uonealdng sy aJedwon
A
"Xapu|
208l — | juudiebuiq v u| psussu| 8g 0] Aug MON uy

US 9,336,143 B1

Sheet 28 of 31

May 10, 2016

U.S. Patent

6l 9Old
3261 9261
1IN 18I
ON UOLIBILD —_— ON UOLIB1LID
! 7“_ Ho_.>m_u. 9¢6l ! _/u___ Ho_.>m_u.
T 1SN UOLIBJLD JI 8YIED 0) BAOI T
9161 (8AuQ —_
381G PIOS “6'9) 9D vI6} fowan
A
761
SSIIN
ayoe) uo
ve6l eje(peo
(8yoeD woi4 191A3 J0N) IH uo Alowsyy 01 AdoH
2161 sbein)s ysig

US 9,336,143 B1

Sheet 29 of 31

May 10, 2016

U.S. Patent

0¢ '©Old

102 (0SS) eAuq a181s pljos T

10¢ uoiBay szisjuspg

A

J0¢ uoibay szis-jus)x3

A

[4

N r ~

8002
(0z15 JUBIXT
0} dn JaA0D)

sojAg Buymg

v00¢
1SIuoIsnox3

10SHO ‘SlpuBHaIl

¢00¢
Jsiuoisnjox

19SHO ‘S|puBHaIY

- 9¢0¢ 7202 =52
IENEERSY M uewsgen [Juswa|g 181
0¥0¢ 1817 uoIsnjoxy

0¢0¢ xspu| 8|14

US 9,336,143 B1

Sheet 30 of 31

May 10, 2016

U.S. Patent

AR E |
JUSIXS UB U}IM 90|
pifeAu| Buneoipu) dewyg
JUSIXS UB U)IM %209
pifeA buneolpu| dewyg
¢l ¢ Juswe|g 18 7712 JuaWa[3 1S

1 T¢ dewnig ooig ApieA

deuwnig %0019 AipifeA -
18810 NAM -
J0)B307T NIM 8Yoe) -

US 9,336,143 B1

Sheet 31 of 31

May 10, 2016

U.S. Patent

¢Z '9Old
01z
(shun sbeioig
az
2oelR)U| Jlun abeialg
00¢¢ 02z
auibu3 Jojeuiw3 s1eandng

abei0)g uonesdnpag

!

¥0¢c
Jowswbeg

:

80¢¢
[03U0D) WIRJSAS 814

c0ce

80BJSIU| S9IAIDG 8|14

+

'

(2444
(uoneoddy dnyoeg “6a)

(shusi)

US 9,336,143 B1

1
INDEXING A DEDUPLICATED CACHE
SYSTEM BY INTEGRATING FINGERPRINTS
OF UNDERLYING DEDUPLICATED
STORAGE SYSTEM

FIELD OF THE INVENTION

Embodiments of the present invention relate generally to
data storage systems. More particularly, embodiments of the
invention relate to a deduplicated and compressed storage
device.

BACKGROUND

Traditional storage architecture separates primary storage
from protection storage. Storage administrators have
struggled with the complexity, cost, and overhead associated
with the approach. Protection integrated primary (PIP) stor-
age architecture is a new approach enabling consolidation of
primary workloads and data protection into one physical stor-
age system. PIP reduces storage costs and reduces the time for
backup creation and restoration because of its integrated
design.

In order to build a suitable PIP storage, one needs to bal-
ance price, performance, and capacity. A single PIP storage
may utilize any type of non-volatile storage medium such as
flash memory, PCle-connected flash memory, solid state
device (SSD), magnetic tape, and magneto-optical (MO) stor-
age media to take advantage of different cost performance
characteristics of different non-volatile storage medium. For
example, SSDs can deliver about 500x more input/output
operations per second (IOPS) than spinning disk but also have
5x the cost. SSDs, as well as other forms of flash memory,
have a limited number of write-erase cycles after which a
given region of memory cannot be rewritten. A tiered infra-
structure, including a smaller cache/tier layer of a higher cost
and higher performance medium such as SSD and a larger
lower cost and lower performance medium such as disk stor-
age, offers a good comprise. The challenge is to build the
tiered infrastructure economically and with high perfor-
mance.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example and not limitation in the figures of the accompanying
drawings in which like references indicate similar elements.

FIG. 1 is a block diagram illustrating a storage system
according to one embodiment of the invention.

FIG. 2 illustrates a three-layer architecture of a protection
integrated primary (PIP) storage according to one embodi-
ment of the invention.

FIGS. 3A-B are flow diagrams illustrating operations of a
deduplicated cache system architecture according to one
embodiment of the invention.

FIG. 4 illustrates the process of packing and storing cached
datain a deduplicated cache system according to one embodi-
ment of the invention.

FIG. 5 is a flow diagram illustrating searching and storing
a data extent utilizing a Fingerprint index according to one
embodiment of the invention.

FIG. 6 is a flow diagram illustrating operation of a file
index in a deduplicated cache system according to one
embodiment of the invention.

FIGS. 7A-B illustrate indexing architectures in a dedupli-
cated cache system according to embodiments of the inven-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 8A-C illustrate formats of file index base entry,
duplicate entry, and fingerprint index entry according to one
embodiment of the invention.

FIG. 9 is a flow diagram illustrating reading a file block
through an indexing architecture according to one embodi-
ment of the invention.

FIG. 10 is a flow diagram illustrating writing extents into a
cache through an indexing architecture according to one
embodiment of the invention.

FIGS. 11A-H illustrate usage of generation IDs in a dupli-
cated cache system according to one embodiment of the
invention.

FIG. 12 is a flow diagram illustrating a process of reading
request for a base entry utilizing hashtable optimization
according to one embodiment of the invention.

FIG. 13 is a flow diagram illustrating a process of reading
request for a duplicate entry utilizing hashtable optimization
according to one embodiment of the invention.

FIG. 14 illustrates an indexing architecture utilizing hash-
ing in a deduplicated cache system according to one embodi-
ment of the invention.

FIGS. 15A-B illustrates alternative segment trees accord-
ing to embodiments of the invention.

FIG. 16 illustrates a deduplicated cache system utilizing
LP indexing according to one embodiment of the invention.

FIGS. 17A-B illustrate the operations of an enhanced LRU
eviction mechanism according to one embodiment of the
invention.

FIG. 18 is a flow diagram illustrating the operations of an
enhancement LRU eviction mechanism according to one
embodiment of the invention.

FIG. 19 illustrates the insertion and eviction of data in a
deduplicated cache system according to one embodiment of
the invention.

FIG. 20 illustrates an indexing architecture utilizing exclu-
sion lists in a deduplicated cache system according to one
embodiment of the invention.

FIG. 21 illustrates list elements within an exclusion list
according one embodiment of the invention.

FIG. 22 is a block diagram illustrating a deduplicated stor-
age system according to one embodiment of the invention.

DETAILED DESCRIPTION

Various embodiments and aspects of the inventions will be
described with reference to details discussed below, and the
accompanying drawings will illustrate the various embodi-
ments. The following description and drawings are illustra-
tive of the invention and are not to be construed as limiting the
invention. Numerous specific details are described to provide
a thorough understanding of various embodiments of the
present invention. However, in certain instances, well-known
or conventional details are not described in order to provide a
concise discussion of embodiments of the present inventions.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in conjunction with the embodiment
can be included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification do not necessarily all refer to
the same embodiment.

According to some embodiments, techniques of a combi-
nation of deduplication and compression are utilized to effec-
tively increase cache capacity. According to one aspect of the
invention, a deduplicated cache system is provided to dedu-
plicate and compress data to be cached in a cache memory
device such as a non-volatile memory device. The cache

US 9,336,143 B1

3

system maintains a fingerprint index and a file index having
file extent entries, where a file extent refers to a contiguous
region of a file. The file index is used to access the cached file
extents stored in the cache memory device. The fingerprint
index is used to determine whether a particular file extent has
already been cached in the cache memory device based on its
respective fingerprint, which, in one embodiment, is a cryp-
tographically secure hash over the data such as SHAIL. In
response to receiving a request to cache a file extent of a file,
its fingerprint is generated or retrieved and used to look up in
the fingerprint index to determine whether any fingerprint
entry matching the fingerprint is found. If so, that means the
content for the corresponding file extent has already been
stored in the cache memory device. The file is associated with
the storage location that caches the corresponding file extent
by creating or inserting a file extent entry into the file index.
While we use file system terminology throughout this docu-
ment, the same techniques can be applied to storage volumes,
object stores, and other storage devices.

According to another aspect of the invention, the finger-
print index is a partial index that only covers a subset of the
file extents stored in the cache memory device. An efficient
insertion and eviction mechanism is employed to maintain the
fingerprint index in a relatively small size. A variety of
replacement policies can be utilized to determine which of the
file extent entries and associated fingerprint entries should be
inserted or evicted from the file index and fingerprint index
respectively. In addition, other replacement policies are uti-
lized to determine which file extents should be inserted or
evicted from the cache system. In one embodiment, each of
the file entries may be associated with a list of one or more
linked nodes that collectively represent a file extent, where
each node includes a bitmap having multiple bits, each cor-
responding to one of the data blocks within the corresponding
extent associated with the node. In some embodiments, the
data block is an aligned sub-region of the file extent. As an
illustrative example, using 32 KB file extents, a data block
may be 4 KB. In other embodiments, the data block is a
variable-sized sub-region of the file extent, in which case the
extent header indicates the offset and size of each block
within the extent. The bitmap indicates which of the data
block within the file extent are valid.

According to another aspect of the invention, some finger-
prints of the underlying deduplicated storage system are
shared and utilized by the fingerprint index of the cache
system. According to one embodiment, the file extents cached
in the cache memory system are compressed into a write-evict
unit (WEU) with some other file extents. The WEU is then
stored in the cache memory device. The size of a WEU may
match an erasure unit size of that particular cache memory
device. When storing cached data into the cache memory
device, an entire WEU is written and/or evicted to improve
the lifespan of the cache memory device. When accessing the
cached data, a file extent is read (which can be smaller than a
WEU).

Deduplicated Cache System Architectures

FIG. 1 is a block diagram illustrating a storage system
according to one embodiment of the invention. Referring to
FIG. 1, system 100 includes, but is not limited to, one or more
client systems 101-102 communicatively coupled to storage
system 104 over network 103. Clients 101-102 may be any
type of clients such as a server, a personal computer (e.g.,
desktops, laptops, and tablets), a “thin” client, a personal
digital assistant (PDA), a Web enabled appliance, a gaming
device, a media player, or a mobile phone (e.g., Smartphone),
etc. Alternatively, any of clients 101-102 may be a primary
storage system that provides storage to other local clients,

30

40

45

50

55

4

which may periodically back up the content stored therein to
a backup storage system, such as storage system 104. Net-
work 103 may be any type of networks such as a local area
network (LAN), a wide area network (WAN) such as the
Internet, a fiber network, a storage network, or a combination
thereof, wired or wireless. Clients 101-102 may be in physi-
cal proximity or may be physically remote from one another.
Storage system 104 may be located in proximity to one, both,
or neither of clients 101-102.

Storage system 104 may be used as any type of server or
cluster of servers. For example, storage system 104 may be a
storage server used for any of various different purposes, such
as to provide multiple users with access to shared data and/or
to back up data (e.g., mission critical data). In one embodi-
ment, storage system 104 includes, but is not limited to, file
manager 117, cache management layer 106, deduplication
storage engine 107, storage units 108-109, and cache memory
device (or simply referred to as cache) 114 communicatively
coupled to each other. Storage units 108-109 and cache 114
may be implemented locally (e.g., single node operating envi-
ronment) or remotely (e.g., multi-node operating environ-
ment) via interconnect 120, which may be a bus and/or a
network (e.g., a storage network or a network similar to
network 103). Storage units 108-109 may include a single
storage device such as a hard disk, a tape drive, a semicon-
ductor memory, a plurality of storage devices such as a redun-
dant array system (e.g., a redundant array of independent
disks (RAID)), a system for storage such as a library system
or network attached storage system, or any other appropriate
storage device or system. Note the terms “cache memory
device” and “cache” are used interchangeably within the
specification, and a cache memory device can be volatile or
non-volatile devices.

File manager 117 may be executed by a processor to pro-
vide an interface to access files stored in storage units 108-
109 and cache 114. Cache management layer 106 contains
cache manager 115, file index 116, and optionally fingerprint
(FP) index 113. Cache management layer 106 and file man-
ager 117 reside in memory of a processor in one embodiment.

In one embodiment, file index 116 is used to access data
cached in cache memory device 114. Fingerprint index 113 is
used to deduplicate the data stored in cache memory device
114. When data such as data objects 112-113 is accessed in
the underlying storage system, the data may be cached in
cache memory device 114, in this example, a non-volatile
memory device such as a solid state drive (SSD) or other flash
memory device. In response to receiving a request to cache a
file extent of a file, its fingerprint is generated and used by
cache manager 115 to look up in the fingerprint index 113 to
determine whether any fingerprint entry matching the finger-
print is found. If so, that means the corresponding data has
already been stored in the cache memory device 114 as a file
extent. The file is associated with the storage location that
caches the file extent by creating or inserting a file extent entry
into the file index 116.

According to one embodiment of the invention, the finger-
print index 113 is a partial index that only covers portions of
the file extents stored in the cache memory device 114. An
efficient insertion and eviction mechanism is employed to
maintain the fingerprint index in a relatively small size. A
variety of replacement policies can be utilized to determine
which of the file fingerprint entries should be inserted or
evicted from the fingerprint index 113. In addition, cache
management layer 106 uses other insertion and eviction poli-
cies to determine which file extents should be kept in the
cache and referenced by the file index 116. In one embodi-
ment, each of the file extent entries in the file index 116 may

US 9,336,143 B1

5

be associated with a list of one or more linked nodes that
collectively represent a file extent. Each node includes a
bitmap having multiple bits, each corresponding to one of the
data blocks within the corresponding extent associated with
the node. The bitmap is to indicate which of the data blocks
within the file extent are valid.

According to another embodiment of the invention, some
of the fingerprints of the underlying deduplicated storage
system (e.g., fingerprints as part of metadata 110-111) are
shared with and utilized by the fingerprint index 113 of the
cache management layer 106. According to one embodiment,
the file extents cached in the cache memory device 114 are
compressed into a write-evict unit (WEU) together with some
other file extents from the same file or different files. The
WEU is then stored in the cache memory device. The size of
a WEU may match an erasure unit size of that particular cache
memory device. When storing data into the cache memory
device 114, an entire WEU is written or evicted to improve the
lifespan of the cache memory device 114. When accessing
data stored in the cache memory device 114, a file extent is
read. In some embodiments, a file extent is significantly
smaller than a WEU, which reduces the amount of excess data
read to satisfy a request. In some embodiments, a file extent is
the unit of compression so that only a file extent is needed to
be read in order to decompress and return the requested data
which is part of that file extent.

Note while terminologies like cache management layer,
cache manager, and cache memory devices are utilized in
discussion of embodiments of the invention, the invention
applies to a multi-tier or multi-layer storage architecture. In
other words, unless specified, the discussed embodiments of
the invention apply to a multi-tier system or multi-layer archi-
tecture where the storage contains more than one tier or one
layer, and the tier and layer closer to memory is not a cache.

The operations of storing file data in the cache memory
device 114 are discussed in detail herein below. For storing
file data in storage units 108-109, deduplication storage
engine 107 is configured to segment the file data into multiple
chunks (also referred to as segments) according to a variety of
segmentation policies or rules. Deduplication storage engine
107 may choose not to store a chunk in a storage unit if the
chunk has been previously stored in the storage unit. In the
event that deduplication storage engine 107 chooses not to
store the chunk in the storage unit, it stores metadata enabling
the reconstruction of the file using the previously stored
chunk. As a result, chunks of file data are stored in a dedupli-
cated manner, either within each of storage units 108-109 or
across at least some of storage units 108-109. The metadata,
such as metadata 110-111, may be stored in at least some of
storage units 108-109, such that files can be accessed inde-
pendent of another storage unit. Metadata of each storage unit
includes enough information to provide access to the files it
contains.

In one embodiment, the metadata information includes a
file name, a storage unit where the segments associated with
the file name are stored, reconstruction information for the
file using the segments, and any other appropriate metadata
information. In one embodiment, a copy of the metadata is
stored on a storage unit for files stored on a storage unit so that
files that are stored on the storage unit can be accessed using
only the information stored on the storage unit. In one
embodiment, a main set of metadata information can be
reconstructed by using information of all storage units asso-
ciated with the storage system in the event that the main
metadata is lost, corrupted, damaged, etc. Metadata for a
storage unit can be reconstructed using metadata information
stored on a main storage unit or other storage unit or units

10

20

25

30

35

40

45

50

55

60

65

6

(e.g., replica storage unit). Metadata information further
includes index information (e.g., location information for
segments in storage units). In one embodiment, metadata
includes prime segment information that can be used to pro-
vide a consistent point of a file system and/or reconstruct a file
system in the event of file system failure.

FIG. 2 illustrates a three-layer architecture of a protection
integrated primary (PIP) storage according to one embodi-
ment of the invention. At the bottom layer of the PIP storage
is disk storage 202, which may be implemented using hard
drives for large capacity. Disk storage 202 may be dedupli-
cated in one embodiment. Disk storage 202 includes contain-
ers 204 to store data files, which contain segmented chunks
after deduplication in one embodiment. Disk storage 202 also
contains file recipes 206, including file handles, fingerprints
of data and fingerprints of metadata such as in nodes of a
Merkle tree. A Merkle tree can be used as a file recipe to
provide access to file data in which the bottom (0”) level is the
data, the 1% level contains the fingerprints of consecutive
regions of data (grouped into segments) and the upper levels
are fingerprints of the segments of the level below.

The middle layer of the three-layer architecture is a cache
memory device (such as a solid state device, SSD or flash
memory) 210, or simply referred to as cache, to accelerate
performance. In cache 210, data are stored and evicted using
a basic data structure referred to as a write-evict unit (WEU)
represented by WEUs 212 in FIG. 2. Garbage collection
module 214 is configured to evict WEUs no longer needed
and free space to cache WEUs for new requests. The forma-
tion and operations of WEU are discussed in detail herein
below. The need of a WEU stems from the fact that cache 210
may use storage medium different from disk storage 202.

In one embodiment, the cache 210 is made of SSD, and
SSD has unique properties that must be considered (these
techniques/properties also generally apply to any flash-based
storage device such as PCle-based flash devices). For
example, a SSD storage unit must be explicitly erased before
being overwritten, and the unit of erasure (up to MB(s) in
size) is much larger than the unit of individual writes in a disk
storage (e.g., 4 kilobytes). In addition, writes wear out the
SSD storage over time; therefore, less frequent writing is
more desirable.

Cache 210 uses WEU as its basic data structure, different
from data structures such as chunks used in containers 204 of
the underlying storage 202. WEU is formed by multiple (and
compressed) extents, which may be comprised of fixed-size
blocks representing consecutive bytes (often many kilobytes)
according to one embodiment of the invention. The consecu-
tive bytes are within a single file in one embodiment. Extents
may be the same as or different from chunks depending on
implementation. An extent is the access unit size (the unit of
read from the cache) that is performed by the cache system in
response to a request to access a file block of a file. A block
(also referred to as a file block) is a data unit of each 10
request to read or write to the underlying storage system. In
this example, data requested by a higher file system layer
(such as NFS) is in the form of block requests, which are
converted to extent requests in the cache, while data being
written in cache memory device 210 is in a form ofa WEU. A
WEU includes multiple extents, each of which is compressed
therein where each extent can be independently read and
accessed to satisfy read requests from the higher layers of the
file system. The size of a WEU may be configured to match an
erasure unit size of cache memory device 210, which depends
upon the specification or characteristics of the cache memory
device 210. As a result, the lifespan of the cache memory

US 9,336,143 B1

7

device 210 can be improved. Further detailed information
concerning a WEU will be described in details further below.

The upper layer is random access memory (RAM) 220,
which may be part of system memory of a storage system
such as storage system 104 of FIG. 1. RAM 220 may be
dynamic RAM (DRAM) or non-volatile RAM (NVRAM) or
a combination thereof in one embodiment. RAM 220 con-
tains cache manager 232, which interacts with recipe cache
224 (for storing Merkle tree segments and caching portions of
the fingerprint index of the underlying storage system) to
accelerate reading from and writing data to disk storage 202.
In addition cache manager 232 interacts with cache indices
222 (such as fingerprint index 113 and file index 116 illus-
trated in FIG. 1) to read from and write to cache device 210.
Note RAM 220 also contains a garbage collection module
(not shown). Also note that cache indices 222 interact with
WEUSs 212 for data caching in and evicting from cache 210 to
accelerate system performance. Note the protection inte-
grated primary (PIP) storage of FIG. 2 may be implemented
as the storage system 104 of FIG. 1.

FIGS. 3A-B are flow diagrams illustrating operations of a
deduplicated cache system architecture according to one
embodiment of the invention. The operations may be per-
formed by storage system 104 as illustrated in FIG. 1.

Referring to FIG. 3A, at reference 302, a request for
accessing a data block associated with a file (e.g., file block)
is received at a storage system. In one embodiment, a data
block referred to herein is in a form of a part of an extent. At
reference 304, a file manager of the storage system provides
access of the requested data block in a persistent storage
device of the storage system. The persistent storage device
may be a disk storage device in one embodiment. Then at
reference 306, a cache manager of the storage system caches
the data block in conjunction with its surrounding extent in a
cache, where the data extent is deduplicated. In the cache, at
least some of the data extents are deduplicated data extents,
and at least one of the data extents in the cache is referenced
by different regions of an identical file or different files.

In one embodiment, caching the data extent at reference
306 includes operations illustrated in FIG. 3B. Referring to
FIG. 3B, at reference 310, a fingerprint based on the content
of the data extent is generated. At reference 312, it is deter-
mined whether the data extent of the file has been stored in the
cache by matching the fingerprint against fingerprints of the
data extents that have been stored in the cache. Then if the
data extent has already been stored in the cache as a data
extent of another file or the same file at a different file loca-
tion, the data extent is associated with the existing data extent
atthe cache at reference 314. Note that the existing data extent
may be cached in the cache during a caching process of
another file and the caching process may be different from the
current file.

Also note, in one embodiment, matching the fingerprint
and associating the data extent with the existing data extent at
the cache utilizes cache indices such as fingerprint index and
file index as discussed in more details herein below.

Packing and Storing Cached Data in Deduplicated Cache
System

In one embodiment, data blocks stored in cache of storage
system 104 illustrated in FIG. 1 are arranged into extents and
WEUs instead of chunks in storage units 108-109. FIG. 4
illustrates the process of packing and storing cached datain a
deduplicated cache system according to one embodiment of
the invention. Data are stored in chunks in deduplicated disk
storage 402. Data may also be stored in some other types of
storage with a different data block format. In the deduplicated
cache system, data blocks stored as chunks or other format in

10

15

20

25

30

35

40

45

50

55

60

8

the underlying storage system are grouped into file extents (or
simply extents), which are comprised of multiple consecutive
blocks of data of a file in one embodiment. Data Chunks
404-408 (or other format of extents) are compressed to com-
pressed extents 422-424. Extents after compression may have
various sizes. The compressed extents 422-424 are packed
into a write-evict unit (WEU), WEU 420, which is referred to
as open WEU to designate the WEU can still pack more
compressed extents. The open WEU 420 already contains
compressed extents 426 and 428, and compressed extents 422
and 424 are packed into open WEU 420 after being com-
pressed using a variety of compression algorithms. The size
of'the WEU is determined based on accessing characteristics
of'the cache. For example, an extent has a size of 32K bytes,
and a WEU has a size of 1M bytes, thus multiple extents are
compressed and packed into a single open WEU. Once open
WEU 420 is filled completely with extents, it becomes closed,
and will be inserted into a cache, such as SSD 410, which
already contains multiple closed WEUs at reference 412.
Note each extent is associated with a header or a trailer
containing a variety of information regarding the extent. An
embodiment of extent header is discussed herein below in
connection with discussion of FIG. 7.

As cache is often fully populated, writing a WEU into the
cache entails evicting some other WEUs from the cache. A
least-recently-used (LRU) policy (or more generally some
other cache replacement policy) may be used to select which
WEU to evict according to one embodiment of the invention.
An access time for a WEU is initially set when it is written to
the cache and updated when there are reads or writes that
access extents within the WEU. The access times are tracked
atthe WEU level instead of at the extent level. The access time
for WEUs is maintained in memory, for example, through a
cache manager such as cache manager 115 of FIG. 1. The
cache manager maintains access time for WEUs and deter-
mines LRU status of WEUs. Once a new WEU needs to be
inserted, and the cache is fully populated, the cache manager
selects the WEU with the earliest access time to evict, and
then inserts the new WEU. A feature of WEU management in
a deduplicated cache system is the generation ID of a WEU,
which will be discussed in detail herein below. While LRU is
discussed throughout this document, it should be understood
that numerous other cache replacement algorithms are pos-
sible such as most-recently-used, least-frequently-used, as
well as combinations of policies.

Indexing Architecture in Deduplicated Cache System

In one embodiment, indices such as fingerprint (FP) index
113 and file index 116 are utilized to effectively manage
WEUs in a deduplicated cache system. FIG. 5 is a flow
diagram illustrating searching and storing a data block utiliz-
ing a Fingerprint index according to one embodiment of the
invention. The process may be performed at cache manager
115 of FIG. 1, which may be implemented as processing logic
in software, hardware, or a combination thereof.

Referring to FIG. 5, the process starts with generating a
fingerprint for a data extent in response to receiving a request
for caching the data extent of a file at reference 502. Based on
the generated fingerprint, the cache manager search in a fin-
gerprint index to determine whether the data extent has been
stored in the cache at block 504. The fingerprint index
includes a number of fingerprint entries, and each fingerprint
entry maps a fingerprint to a particular storage location of the
cache in which a corresponding data extent is stored.

If a matching fingerprint entry is found in the fingerprint
index at reference 506, the cache manager associates an iden-
tifier identifying the data extent and the file with a storage

US 9,336,143 B1

9

location of the cache obtained from the matching fingerprint
entry, while the data extent itself is not stored in the cache.

If a matching fingerprint entry is not found in the finger-
print index at reference 508, the cache manager stores the data
extent at a location within the cache. Then at reference 510,
the cache manager inserts the generated fingerprint in a fin-
gerprint entry of the fingerprint index, and maps the finger-
print to the location within the cache.

In one embodiment, associating the identifier of an extent
with a storage location utilizes a file index. FIG. 6 is a flow
diagram illustrating operation of a file index in a deduplicated
cache system according to one embodiment of the invention.
The operations of FIG. 6 are a zoom-in of reference 506 of
FIG. 5, where the cache manager associates the identifier
identifying the data extent and the file with the storage loca-
tion of the cache. Referring to FIG. 6, the association starts at
reference 602 with inserting a file entry in a file index, where
the file entry has the identifier mapping to the storage location
of the cache. The file index is utilized to access the dedupli-
cated data extents stored in the cache. At reference 604, in
response to receiving another request to read another data
extent from the cache, the cache manager searches the file
index based on another identifier identifying the data extent of
another file. Then the cache manager retrieves the other data
extent from the cache at another storage location that is iden-
tified in a corresponding file entry in the file index.

In one embodiment, there are two types of file entries in the
file index. One is a base entry, which is the first entry pointing
to a file extent at a particular cache location. The other is a
duplicate entry, which points to the extent at the particular
cache location of a base entry. There may be multiple dupli-
cate entries for a base entry. By using base/duplicate entries
instead of a single type of entry for all data extents, the file
index is easier to maintain and also easier to interact with a
fingerprint index containing fingerprints of the data extents.
In one embodiment, instead of a single file index, two differ-
ent indices can be formed, and one is for the base entries and
the other for the duplicate entries.

Note that each data block is stored within a file extent of a
write-evict unit (WEU) in one embodiment as discussed
herein above, and the size of the WEU is determined based on
accessing characteristics of the cache.

FIG. 7A illustrates an indexing architecture in a dedupli-
cated cache system according to one embodiment of the
invention. In FIG. 7A, the cache memory device (or simply
cache) is at reference 740. Cache 740 can be a solid-state
device, a flash memory, or another suitable storage medium.
Cache 740 contains a number of write-evict units (WEUs)
such as WEU 746. Each WEU contains a WEU header such as
WEU header 747, and a number of extents such as extent 742.
Each extent such as extent 742 has an associated header such
as header 744. Extent header 744 contains fingerprint of the
extent, and a base <file handle, offset>, which is described
herein below, and a compression size in one embodiment.
WEU header 747 may contain a copy of the extent headers for
the extents within WEU 746 (as well as other metadata). The
information in WEU header 747 may be used to accelerate the
boot up of cache 740.

File index 730 contains a number of index elements such as
index elements 702 and 704. The index contains one or more
base entries, and it may also contain one or more duplicate
entries. For example, index element 702 contains base entry
732 and duplicate entry 734. Entries contain an identifier
identifying a file region of a file. In some embodiments, the
identifier will be in a form of a file handle and an offset. In
some embodiments, the identifier will be in a form of LUN ID
(Logical Storage Unit ID) and offset. Throughout the descrip-

20

40

45

10

tion and claims, we refer herein to <file handle, offset>, which
will be understood to mean any such identifier such as file
handle and offset, LUN ID and offset, or more generically
object ID and offset. The <file handle, offset>may attimes be
represented by a hash of the <file handle, offset>. In one
embodiment, a base entry contains a <file handle, offset>, a
cache WEU locator indicating the WEU the base entry points
to, and a WEU offset indicating a particular extent within the
WEU. Similarly, a duplicate entry indicates <file handle,
offset>, a cache WEU locator, and a WEU offset. In addition,
a duplicate entry also includes a generation identifier, which
will be explained in more details herein below.

Note that while <file handle, offset> is used for a network
file system (NFS) in this example, other ways to identify data
location within a file are feasible for other file systems such as
a common Internet file system (CIFS), a virtual tape library
interface (VTL), a small computer system interface (SCSI)
system, etc. The principle of embodiments of this invention is
agnostic to a particular file system or network file system
protocol, thus unless specified otherwise in the specification,
while <file handle, offset>is utilized for a file in discussion of
embodiments of the invention, other means for CIFS, VTL,
SCS]I, or other applicable systems can also be utilized for
indexing and identification of data in embodiments of the
invention.

Fingerprint index 750 contains fingerprint entries. Each
fingerprint entry includes a fingerprint, a cache WEU locator
indicating the WEU containing data and a WEU offset indi-
cating a particular extent within the WEU. Note that base
entry 732, duplicate entry 734, and fingerprint index 754 all
point to the same extent, extent 742. Each extent, such as
extent 742, contains a header, which includes a fingerprint of
the data within the extent, a base <file handle, offset>, and a
compression size indicating the length of the extent. In an
alternate embodiment, a trailer of an extent is implemented,
containing similar or a different format to identify the extent.
The header or trailer of an extent may be associated with the
extent without being closely stored together in the WEU.

FIG. 7B illustrates an embodiment that supports write-
back mode for a deduplicated cache system. In write-back
mode, extents written by a client are inserted into the cache
and not immediately stored to an underlying storage system.
In write-back mode, the cache therefore holds extents that
contain content that is newer than content in the storage
system. We refer to these extents as dirty, while extents that
have the same content as the storage system are referred to as
clean. Dirty list 770 is used to keep track of dirty extents. In
write-back mode, dirty extents and clean extents are option-
ally packaged into separate WEUs. Dirty list 770 is main-
tained in non-volatile RAM or other persistent storage that is
fast to access for logging purposes. Entry 772 consists of
reference to the extent’s location in the cache consisting of the
WEU locator, WEU offset, and compressed extent size. Dirty
extents are written to the underlying storage system either
when they are evicted from the cache or when the dirty list
reaches a size threshold. In the latter case, the extent still
exists in the cache and is considered clean.

FIGS. 8A-C illustrate formats of file index base entry,
duplicate entry, and fingerprint index entry according to one
embodiment of the invention. As illustrated in FIG. 8A, a file
index base entry contains a 16 byte <file handle, offset> 802
indicating data location within a file, a four byte cache WEU
locator 804 indicating the WEU location of the extent that the
base entry is associated with, a four byte WEU offset 806
indicating the extent location within the WEU, and a 4 byte
compressed extent size 808 indicating the number of bytes
necessary to read from the WEU to access the compressed

US 9,336,143 B1

11

extent and its header. As illustrated in FIG. 8B, a file index
duplicate entry contains a 16 byte <file handle, offset> 812
indicating data location within a file, a four byte cache WEU
locator 814 indicating the WEU location of the extent that the
base entry is associated with, a four byte WEU offset 816
indicating the extent location within the WEU, a two byte
generation identifier (generation ID) 820, and a 4 byte com-
pressed extent size 818 indicating the number of bytes nec-
essary to read from the WEU to access the compressed extent
and its header. Similarly, FIG. 8C illustrates a fingerprint
index entry containing a 20 bytes fingerprint 822 for a par-
ticular extent the fingerprint index entry is associated with, a
four byte cache WEU locator 824 indicating the WEU loca-
tion of the extent that the base entry is associated with, a four
byte WEU offset 826 indicating the extent location within the
WEU, and a 4 byte compressed extent size 828 indicating the
number of bytes necessary to read from the WEU to access the
compressed extent and its header. Note the entries of each
index and size of each entry is for illustration only, and more
or less entries of different sizes may be utilized in a different
embodiment.

FIG. 9 is a flow diagram illustrating reading a data block
through an indexing architecture according to one embodi-
ment of the invention. The method can be performed by
processing logic such as a cache manager 115 illustrated in
FIG. 1.

Referring to FIG. 9, the cache manager receives a request
to read a data block of a file at reference 902. The request
contains a <file handle, offset> indicating the location of the
requested data block within the file in one embodiment. At
reference 904, the cache manager checks a file index associ-
ated with the cache based on the request. At reference 906, the
cache manager determines whether an entry with matching
<file handle, offset> is found. It may be necessary to convert
from the file offset requested by the client by rounding down
to the nearest multiple of the extent size supported by the
cache. This entry may be either a base entry or a duplicate
entry. If a matching base entry is found within the file index,
the cache manager reads an extent from the cache at reference
908, based on the WEU locator and WEU offset information
within the file index. If a matching duplicate entry is found
within the file index, the cache manager further checks that
the generation ID of the file index entry matches the genera-
tion ID associated with the WEU (either in the WEU header or
in a separate memory location). If the generation ID matches,
it is considered a match, and the cache manager reads the
extent from the cache at reference 908. Otherwise, it is not
considered a match, which is logically the same as when a
matching base entry is not found within the file index. If the
generation ID is not a match, then that entry is removed from
the file index, since it is stale.

When a match is not found, at reference 910, the cache
manager fetches the fingerprint for the extent containing the
requested <file handle, offset> from the underlying storage
system. In some embodiments, fetching the fingerprint for the
extent may entail fetching multiple fingerprints for blocks
within the extent and aggregating them, such as by using a
strong hash function over the concatenation of the block
fingerprints. The cache manager then checks the fetched fin-
gerprint against the fingerprint index. At reference 914, the
cache manager determines whether an entry with matching
fingerprint is found in the fingerprint index. If a match is
found, the flow goes to reference 916, and the cache manager
reads an extent from the cache at reference 916, based on the
WEU locator, WEU offset, and size information within the
fingerprint index (in addition, a new file index entry can be
created for the requested <file handle, offset> pointing to the

10

15

20

25

30

35

40

45

50

55

60

65

12

extent indicated by the fingerprint index match). Otherwise,
the flow goes to reference 918, and the cache manager goes to
storage outside of the cache to find the requested data block.
Note for the request for user read at the cache, the fingerprint
index is not needed through the read path at references 902-
908.

FIG. 10 is a flow diagram illustrating writing extents into a
cache through an indexing architecture according to one
embodiment of the invention. The method can be performed
at a cache manager 115 illustrated in FIG. 1.

Referring to FIG. 10, the cache manager first writes a new
extent into a cache at reference 1002 (the cache manager has
also computed the fingerprint of the extent at this point). An
entry is inserted at reference 1004 to a file index associated
with the indexing architecture and since this is a new extent,
the entry is inserted as a base entry, and the base entry points
to the extent location within the cache. At reference 1006, the
cache manager adds an entry to the fingerprint index associ-
ated with the indexing architecture for the extent, and points
the entry to the extent location within the cache.

At reference 1008, another extent is received to be written
to the storage, and the cache manager computes and checks
the fingerprint of the extent at reference 1010. At reference
1012, the cache manager determines if the extent is in the
cache (thus being a duplicate). If the extent is not in the cache,
at reference 1014, the cache manager inserts an entry into the
file index and labels it to be a base entry. Then at reference
1016, the cache manager adds an entry to the fingerprint index
and links the entry to the cache location, and the flow goes
back to reference 1008 for the next extent to be written to the
cache. If the extent is in the cache, at reference 1018, a
duplicate entry is inserted into the file index pointing to the
cache location indicated by the matching fingerprint index
entry, and the flow also goes back to reference 1008 for the
next extent to be written to the cache.

Generation ID in Deduplicated Cache System

In FIGS. 7A-B, a least-recently-used (LRU) array at refer-
ence 764 is illustrated according to one embodiment of the
invention. The LRU array contains an entry for each WEU.
Each entry contains a generation ID and a LRU status of the
corresponding WEU. The usage of LRU status for WEUs has
been discussed herein above, and here the generation ID is
discussed in more details. Generation ID (short for identifier)
is for confirming the validity of data read from the cache. As
illustrated in FIGS. 7A-B, generation ID is used when reading
duplicate entries but not base entries from the file index.

FIGS. 11A-H illustrate the usage of generation IDs in a
deduplicated cache system according to one embodiment of
the invention. The deduplicated cache system uses a solid-
state device as a flash cache in this embodiment as an
example, and each WEU uses a generation ID independent of
other WEUs. In another embodiment, a global WEU counter
is implemented, although the generation ID is still tracked per
WEU. The size of a generation ID (number of bytes) is set to
avoid issues of counter wrap-around in one embodiment.

FIG. 11 A illustrates an initial state of a deduplicated cache
system. There are two closed WEUs (WEUs 1 and 2) ina SSD
atreference 1102. Their generation IDs are set to 1 and WEU
3 has not yet been stored in SSD thus its generation ID is not
available (NA). The generation IDs are shown at reference
1122. File index 1112 and fingerprint index 1114 are utilized
respectively. An open WEU 1104 in RAM is being filled.

At FIG. 11B, a new extent is written to the open WEU. The
extent is compressed and has a header with a base <file
handle, offset>, fingerprint, compressed size, and the com-
pressed data follows the header. Note that only one extent
header is shown, but every extent has a header. For the extent,

US 9,336,143 B1

13
an entry is added to the file index 1112 and FP index 1114.
There is no change to WEU generation [Ds 1122.

At FIG. 11C, the open WEU in RAM 1104 is full and
written to the SSD cache, and now there are three WEUs in the
SSD cache at reference 1102. The generation ID for WEU 3
is set to 1. Thus, all the WEUs have generation ID of 1 at
reference 1122.

At FIG. 11D, another request to insert an extent into the
cache is received, and because the extent is already in the
cache, a duplicate entry is inserted in file index 1112. The
duplicate entry points to an extent within WEU 3 in the SSD
cache. The generation ID for the duplicate entry is set to 1
because that is the generation ID for WEU 3.

Then at FIG. 11E, a read request comes in for a base <file
handle, offset>. The cache manager determines whether the
requested data is in the SSD cache by checking file index
1112. The read request contains a matching base entry with
the <file handle, offset> pointing to an extent in WEU 3. The
extent is then decompressed and the cache manager responds
with the requested data. Note generation ID is unchanged and
unused for the read based on the base entry of file index 1112.

AtFIG.11F, a new read request comes in for a <file handle,
offset>, which is labeled as a duplicate in file index 1112. The
cache manager sees that the duplicate entry has generation ID
of 1, which matches the WEU generation ID kept in WEU
Generation ID Table 1122. In another embodiment the WEU
Generation ID could be kept in the WEU header instead. The
cache manager then reads the data from WEU 3. The base
<file handle, offset> in the extent header cannot be used for
confirmation in this case, but since the generation ID is cor-
rect, the cache manager considers the data to be valid. The
extent is then uncompressed and used to satisfy the read
request.

At FIG. 11G, time passes, and WEU 3 has been evicted to
make room for another WEU that has been filled in RAM and
needs to be written to the cache. When WEU 3 is evicted, the
cache manager reads the extent headers and removes entries
from the file index 1112 and fingerprint index 1114 for the
extents being evicted. However, the duplicate entry within file
index 1112 is not removed, because the extent header does not
reference it.

AtFIG. 11H, another WEU is written to the cache and take
the place of original WEU 3. Now the generation ID for WEU
3 is increased to value 2. If a read comes in for the duplicate
entry, the cache manager checks the generation ID and finds
that the generation ID of 1 in the duplicate entry is incorrect.
The cache manager then removes the duplicate file index
entry and responds that the cache does not contain the data.

Enhancement of Indexing Architecture in Deduplicate
Cache System

A). Embodiments of Different Fingerprint Indices and
Operations

As discussed herein above, a fingerprint index is refer-
enced either to identify duplicate entries or to map from
fingerprints to physical locations. The size of a fingerprint
entry can be a few percent of the represented data (for
example, a fingerprint of 40 bytes representing a compressed
4 kilobytes block of size 2 kilobytes). This kind of size ratio
is still too large to allow efficiently storing the fingerprint
index in memory, and fingerprints are spilled to a storage
space such as disk or SSD storage. However, accessing fin-
gerprints on disk is slow. Thus, embodiments of the invention
implement several enhancements to keep the fingerprint
index in memory.

In one embodiment, the fingerprint index is only used to
identify duplicates but not to map file index entries to cache
locations. It is the file index that directly references cache

10

15

20

25

30

35

40

45

50

55

60

65

14

locations for both base and duplicate entries. A partial finger-
print index is used to reference only a subset of the data stored
on the cache. The fingerprint index is only consulted to iden-
tify duplicate entries before writing new entries to the cache.
Thus a partial fingerprint index does not impact the accessi-
bility of data, only the deduplication ratio. (This is in contrast
to a full fingerprint index in which the file index indirectly
maps through the fingerprint index to find the cache location.)

In another embodiment, the fingerprint index is used both
to identify duplicates and to map duplicate file index entries to
the cache location. However, base file index entries are still
directly mapped to the cache location. This still allows for
having a partial fingerprint index. This is similar to the pre-
vious embodiment but it allows data to be more readily moved
to anew location in the cache while only having to update one
index entry. However it has the disadvantage that the finger-
prints must remain in the fingerprint index while the data they
reference is in the cache.

In another embodiment, an enhancement applies to post-
process deduplication, in which case no fingerprint index is
needed except when consolidating entries. All the inserted
extents are written to the cache, and the cache is periodically
traversed to identify duplicates and consolidate them into one
location. Stale entries are then cleaned. The advantage is
elimination of the fingerprint index but at the cost of higher
erasures on the cache. Optionally, a full or partial index can be
used to identify duplicates in real-time and consolidate them
later.

B). Cache Deduplication Granularity Difterent from that of
the File System

Deduplicated file systems typically have a deduplication
granularity similar to the file block size. However, in order to
reduce the memory footprint of the file index, a unit larger
than the file block size can be used for insertion into and
eviction from the cache. This can result in having a larger
deduplication granularity than that of the underlying file sys-
tem. To accommodate this requirement, the system may
aggregate the smaller granularity fingerprints together to
form a new fingerprint over the larger region. Alternatively, in
another embodiment, the system has a fingerprint over the
larger granularity that could be stored in the file system
namespace or calculated as needed.

C). Utilizing Invalidation Bitmap

Fileblocks in the cache that are overwritten by a client must
either be rewritten in the cache or marked as invalid. Small
random overwrites in cache (such as one made of SSD) are
expensive and dramatically increase wear. To avoid this, one
embodiment of the invention keeps an in-memory bitmap that
indicates which of the blocks in an extent are invalid. An
embodiment of the invention utilizing an invalidation bitmap
is discussed herein below.

D). Embodiments of Cleaning Stale Entries

A deduplicated cache requires special cleaning consider-
ation. Unlike a primary storage (e.g., a disk storage), which
only removes data due to a file deletion or update, cached
entries can be evicted. Unlike file deletions or updates, which
have information such as <file handle, offset>to referto a file,
when entries are evicted, there is no explicit reference to the
index entry. In this case, back-pointers are needed to deter-
mine which index entries reference the evicted data. How-
ever, the back-pointers within the cache require frequent
updates to the extent header to track duplicate references to
the extent, which either increases cache churn or is size pro-
hibitive if kept in memory. Instead, in one embodiment, a
cleaning process is deployed to record evicted WEUs and
periodically traverse the index entries removing ones that
reference an evicted WEU based on generation number. In an

US 9,336,143 B1

15

alternative embodiment, invalid index entries are removed
when they are accessed upon determining that the underlying
data has been changed (as identified by a generation number
as illustrated herein above). In another embodiment, the file
index is separated into two indices, one for base entries and
one for duplicate entries. The extent headers in the cache
would have back-pointers to the base entries and cleaning
would traverse the duplicate index only. In addition, as
extents within WEUs become invalidated due to file over-
writes, the system can clean mostly dead WEUs by copying
forward valid blocks from cleaned WEUs and repacking them
into new WEUs. Alternatively, valid blocks can simply be
cleaned without getting copied forward to save wear.

E). Embodiments for System Restart

When a deduplicated cache system restarts after a standard
shutdown or a crash, some of the data on the cache will be
valid and some invalid. A scan of the cache is required to
recreate the file index mapping and fingerprint index mapping
to cache location using information such as <file handle,
offset>. In the cache, a per-extent header would be kept that
indicates which file <file handle, offset> corresponds to the
data. In addition, the system journals the invalidation bitmaps
to persistent storage. When recovering from a crash, the cache
manager reads the WEU headers from the cache, which list
the extents within a WEU. Each extent is checked against the
invalidation list, and live extents (i.c., the extent has enough
valid blocks are used to populate the file index and fingerprint
index. The invalidation list can be released once the scan has
completed.

F). Embodiment of Hash Entry Memory Optimization

In one embodiment, the file index illustrated in FIG. 7 is
implemented as a hashtable. The <file handle, offset> (key)
maps to a hash bucket via a hash function. More than one <file
handle, offset> may map to the same hash bucket. In order to
disambiguate entries, a second hash of the <file handle, oft-
set> may be stored in the hashtable entry. Collisions on both
hash functions could still occur, but at much less frequency,
and can be detected by storing the <file handle, offset> in the
extent header in the cache. When the extent is read, a cache
manager validates that the <file handle, offset> in the header
matches the request.

FIG. 12 is a flow diagram illustrating a process of handling
a read request for a base entry utilizing hashtable optimiza-
tion according to one embodiment of the invention. The pro-
cess may be performed by a cache manager 115 of FIG. 1.

Referring to FIG. 12, the process starts with receiving a
read request at reference 1202. The read request identifies the
data block to satisfy the request using a <file handle, offset>
(or the data block for the request may be identified in a
different way discussed herein above). At reference 1204, a
first hash function based on the request is calculated, for
example, using the <file handle, offset>. Then a cache man-
ager uses a first hash value as a key to find an associated
bucket in a file index of the system at reference 1206. At
reference 1208, a second, alternate hash function (for
example a hash function similar to the first hash function but
using different prime numbers for the hash calculation) is
calculated using the <file handle, offset>. The resulting sec-
ond hash value is used to reconcile collisions in the associated
bucket in the file index at reference 1210. Then the cache
manager reads an extent from the cache based on the file index
at reference 1212. The cache manager validates the extent
data at reference 1214 and then the extent is uncompressed
and replied to the read request at reference 1216. A validation
failure means that the <file handle, offset> in the extent
header fails to match the <file handle, offset> of the request.

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 13 is a flow diagram illustrating a process of satistying
a read request for a duplicate entry utilizing hashtable opti-
mization according to one embodiment of the invention. The
process may be performed by a cache manager 115 of FIG. 1.
The work flow of FIG. 13 is similar to that of FIG. 12, thus
only the different steps are discussed. Referring to FIG. 13,
after the first hash value is used as a key to find an associated
bucket in the file index, for the duplicate entry, a full <file
handle, offset> value is used to identify collisions in the
associated bucket in the file index at reference 1308.

FIG. 14 illustrates an indexing architecture utilizing hash-
ing in a deduplicated cache system according to one embodi-
ment of the invention. FIG. 14 is similar to FIG. 7A, and same
or similar references indicate elements or components having
the same or similar functionalities. Note in the base entry in
file index 1430, the <file handle, offset>is only 4 bytes, while
in an implementation without hashing (for example, the for-
mat of’base entry illustrated in FIG. 8 A) is much longer. Thus,
implementation utilizing hashing saves space for the file
index at a deduplicated cache system.

Utilizing Existing Index in Deduplicate Cache System

For a primary storage, duplication exists mostly in snap-
shots, Virtual Machine Disks (e.g., VMDKs, VHDs, etc.), and
files with large extents of similarity. Thus, a large percentage
of deduplication can be achieved with a course grained
chunking (e.g., 128 kilobytes). Some deduplication systems
are already utilizing a Merkle tree tracking coarse grained
duplication, and the existing fingerprints in the memory can
be leveraged to identify duplicate regions in a cache.

FIG. 15A illustrates a segment tree utilized in a dedupli-
cating storage system according to one embodiment of the
invention. Often the segment tree utilized in a deduplicating
storage system is referred to as LP segment tree. The “L” in
LP refers to the level of the tree, and the “P” is 5 for the root
of'the tree, 4 for the nodes below the root node, and so on. The
LP segment tree is a Merkle tree representing a file. In this
embodiment, the Merkle tree has six levels, where the bottom
level, level zero (LO), contains file data. Each parent level
spans 512 children. The parent references a child by the
fingerprint of the child segment. Each node spans a fixed or
variable sized amount of data. In order to locate the data fora
specific offset in the file, one may traverse the Merkle tree
based on the node size covered to the leaf node for that offset.

FIG. 15B illustrates an alternate segment tree utilized in a
deduplicating storage system according to one embodiment
of'the invention. Referring to FIG. 15B, the underlying stor-
age system stores file data chunks at 1.0, and L1 segments
(spanning 128 kilobytes in this embodiment) contain finger-
prints of the LO chunks. Similarly, [.2 segments contain fin-
gerprints of L1 segments, and the chains of fingerprints move
upward to the top of the Merkle tree.

LP fingerprints may be stored in the memory; for example,
recipe cache 224 of FIG. 2 may store the LP fingerprints. With
the LP fingerprints in the memory, we may use some level of
the fingerprint (e.g., L1, L.2, or other levels) without building
a separate fingerprint index in the memory as illustrated in
FIG. 7.

FIG. 16 illustrates a deduplicated cache system utilizing
LP indexing according to one embodiment of the invention.
FIG. 16 is similar to FIG. 7 and the same or similar references
indicate elements or components having the same or similar
functionalities. One difference between the figures is that [.1
fingerprint index 1650 in F1G. 16 takes the place of fingerprint
index 750 in FIG. 7. L1 fingerprint index 1650 stores L1
fingerprints in the memory for deduplication of the cache
system and deduplicates at the data size covered by an L1
entry rather than an extent size. Advantages of using an L1

US 9,336,143 B1

17

fingerprint index include deduplicating at a coarser granular-
ity, using the LP fingerprints already in the underlying system
and likely cached in recipe cache 224 of FIG. 2.

Cache 1640 has two new query interfaces. A read request
from a user may first come from reference 1620. The request
contains a <file handle, offset> indicating the location of the
requested data block within the file in one embodiment. The
cache manager checks file index 1630 associated with the
cache based on the user read request. If a matching entry is
found within the file index, the cache manager reads an extent
from the cache, validates the extent data, and replies to the
request.

If a matching entry is not found within the file index, the
system will traverse the Merkle tree of LP segments of the
underlying deduplicating storage system until it finds the L1
segment covering the requested data. It sends a request of data
with the fingerprint and offset at reference 1670 to see if some
or all of the data covered by the L1 segment are in the cache.
In one embodiment, the checking goes through lower file
system layers. Ifa [L1 fingerprint match is found within .1 FP
index 1650, then that entry will indicate a <file handle, offset>
which maps to the covered data. The corresponding data can
then be read from cache and returned to satisfy the read
request (in some embodiments the presence of an L1 finger-
print entry in the cache only indicates that some of its asso-
ciated datais stored in the cache). An entry can be added to file
index 1630 associating the new <file handle, offset> request
with the cached data of the L1 fingerprint.

Note L1 fingerprint index can be a partial index and not
every data entry in the cache needs to have a L1 entry. In one
embodiment of the invention, a different level of fingerprint
index (such as [.2) or multiple levels may be utilized. Also
note that LP fingerprint index can have entries from different
levels of the segment tree and there may be multiple LP
fingerprint indices in one deduplicated cache system.

Insertion and Eviction of Index Entries

As discussed herein above, a fingerprint index may not
contain entries for all the data. A deduplicated cache system
may implement a variety of ways to decide what to populate
in a fingerprint index. One way is to profile characteristics of
data and the storage system. A client may specify that certain
storage volumes are likely to have duplicates, and fingerprints
of'data in those storage volumes should have a higher priority
of'being index entries in the fingerprint index. For example, a
system knows which files are parts of a primary storage
system versus part of snapshots/backups. When accessing
both the primary version and a snapshot/backup these files
should take a higher priority in having the fingerprints of their
data get entries in the fingerprint index. Similarly virtual
machine disk images are more likely to share duplicate data
and may be given higher priority for adding entries to these
into the fingerprint index.

The system may also profile the data through sampling. For
example, a system may keep a small set of fingerprints in
memory per volume. Ifthe system determines one volume has
more duplicates then another, deduplication can be turned on
for the former volume.

For a given size of fingerprint index (full index or partial
index), to insert a new entry, a current entry needs to be
evicted. A system may evict the least-recently-used (LRU)
entry in the fingerprint index, or other eviction algorithms
may be used. Embodiments of the invention utilize an
enhancement of the LRU based mechanism.

FIGS. 17A-B illustrate the operations of an enhanced LRU
eviction mechanism according to one embodiment of the
invention. FIG. 17A illustrates a simple fingerprint index
containing three entries. The fingerprint at the left most entry

10

15

20

25

30

35

40

45

50

55

60

18

of reference 1702 is the most-recently-used (MRU) entry
while the fingerprint at the right most entry of reference 1706
is the LRU entry. Each entry in the fingerprint index maintains
a count, which counts the number of duplicate file index
entries. Here the entries 1702-1706 have counts 1, 0, and 0
respectively. When a new fingerprint index entry needs to be
added, the cache manager checks the LRU entry, which is
evicted since the LRU entry at reference 1706 has no dupli-
cate.

FIG. 17B illustrates the same fingerprint index containing
the three entries. The difference is that the entries 1712-1716
have counts 1, 0, and 2 respectively. When adding a new entry,
the last entry is temporarily removed, and its count is decre-
mented by one, and it is then reinserted at the head of the
cache and becomes the most recently used (MRU) entry. The
entry with the lowest duplicate count at reference 1714 is then
evicted.

FIG. 18 is a flow diagram illustrating the operations of an
enhanced LRU eviction mechanism according to one
embodiment of the invention. The operations may be per-
formed at cache manager 115 of FIG. 1.

Referring to FIG. 18, the method starts with a new entry to
be inserted in a fingerprint index of a deduplicated cache
system at reference 1802. The cache manager will compare
the duplication count of the least-recently-used entry (LRU)
entry against the count of the entry next to it (the second least
recently used entry) at reference 1804. At reference 1806, it is
determined whether or not the LRU entry has the lower dupli-
cate count. If it has the lower duplicate count, the entry is
evicted, and the new entry is inserted as the MRU entry. Ifthe
LRU entry does not have the lower duplicate count, it is
removed from its present position in the queue and reinserted
atthe top of the LRU queue, and the second least recently used
entry is removed instead. That is, an entry having a combina-
tion of the oldest access time and least duplicated references
(e.g., counts) will be considered as a top candidate for evic-
tion. It should be understood that the described eviction
policy is one embodiment and other embodiments are pos-
sible that use a combination of access time and duplicate
count (with various weights) when making eviction deci-
sions.

Insertion and Eviction of Data in Cache

In a cache, there is flexibility in what is inserted. Evicting
useful data can result in a performance penalty similar to
failing to insert something that would have been useful. The
performance penalty from not caching the “best” data stems
from guessing wrong, but it does not affect correctness. FIG.
19 illustrates the insertion and eviction of data in a dedupli-
cated cache system according to one embodiment of the
invention. The deduplicated cache system contains disk stor-
age 1912, memory 1914, and cache 1916.

Data is loaded from disk storage 1912 to memory 1914
upon cache miss at reference 1922. When no longer required
in memory 1914, the data is moved to cache 1916 if a certain
criterion is met. If the criterion is not met, the data is evicted
from memory 1914 and not cached in cache 1916. At cache
1916, the data is copied to memory 1914 if there is a hit at
reference 1924. At some later time, data may be evicted from
cache 1916 if a certain criterion is not met.

The criteria of insertion are numerous. For example, one or
more criteria may be utilized for the insertion decision:

Access pattern: Caching a large sequential /O should be

avoided as the reuse hit rate may be low;

File “hotness”: The cache may require repeated accesses to

a file extent over a certain threshold prior to insertion;

US 9,336,143 B1

19

Fragmentation: Insertion should be skipped if garbage col-
lection is not keeping up with the arrival of data for
insertion;

Quality of service (QoS) requirement: Some data streams
have QoS requirements and should have a higher prior-
ity in the cache insertion decision;

Memory pressure: The fullness of the cache with other
presumably useful data should be considered;

Likelihood of rereading: If the system knows some data
will be read again (e.g., hints at the application level),
those data needs to be given a higher priority; and

Churn of a cache made of'solid-state device (SSD) (or other
flash-based devices): For a SSD cache, the insertion
decision may be adjusted based on the level of recent
churn in the SSD cache.

Similar to insertion decisions, the access of data can be
accelerated by pre-fetching. Pre-fetching is useful when read-
ing sequential data so that the later data is available, which
allows for more efficient reads. The pre-fetching criteria is
similar to insertion, and the degree of pre-fetch can be varied
based on performance (e.g., whether or not the disk storage is
keeping up with pre-fetch requests) and past history (e.g.,
whether pre-fetched data has been used).

Exclusion List

A cache using SSD has its challenges. For example, a
smaller unit of insertion (e.g., 4 kilobytes) requires finer
grained indexing which will result in more precise matching,
but it will also results in larger memory requirements. A larger
unit of insertion (e.g., 32 kilobytes) has coarser indexing and
will result in lower memory requirements but higher SSD
churn (as sub-regions of the larger unit can become either
invalidated, over-written or never used). As we discussed
above, a SSD wears out over a certain number of writes, so it
is desirable to limit SSD churn.

One approach is to utilize a data structure called an exclu-
sion list. FIG. 20 illustrates an indexing architecture utilizing
exclusion lists in a deduplicated cache system according to
one embodiment of the invention. The deduplicated cache
system contains a file index 2030, each entry of the file index
is anchored by a <file handle, offset>, and each entry points to
an exclusion list such as exclusion list 2040. The file index
entry 2002 points to exclusion list 2040, which contains a
number of list elements or nodes 2022-2026. Each list ele-
ment points to a region in SSD cache 2010, where the region
size 1s equal to or less than an extent size. Regions 2012 and
2014 contain different white areas and grayed-out areas,
which designate valid and invalid data blocks within the
extent region as detailed in FIG. 21.

FIG. 21 illustrates list elements within an exclusion list
according one embodiment of the invention. As illustrated,
each list element contains a cache WEU locator to indicate the
WEU the list element points to, a WEU offset indicating a
particular extent within the WEU, and a validity block bit-
map. The validity block bitmap indicates the validity of
blocks within an extent. For example, an extent of 32 KB may
be divided into eight blocks of 4 KB each. Validity block
bitmap 2112 indicates that blocks 0-2 are valid while blocks
3-7 are either invalid or not present in the cached region.

With validity block bitmaps, an exclusion list may indicate
which parts of extents are valid and thus can be read for data
access and which are not valid or not present. The valid block
bitmaps are updated as data are overwritten in the cache.
Thus, even though a list element points to the same SSD in the
cache, its bitmap can be updated to indicate invalidated
blocks within the extent. This can help reduce SSD churn by
reducing the amount of cleaning (copying forward and con-
solidating of live data) that must be done. The validity bitmap

10

15

20

25

30

35

40

45

50

55

60

65

20

can be journaled to persistent storage so that it is available
when the system restarts either from a normal shutdown or
from a system crash.

FIG. 22 is a block diagram illustrating a deduplication
storage system according to one embodiment of the inven-
tion. For example, deduplication storage system 2200 may be
implemented as part of a deduplication storage system as
described above, such as, for example, the deduplication stor-
age system as a client and/or a server as shown in FIG. 1. In
one embodiment, storage system 2200 may represent a file
server (e.g., an appliance used to provide network attached
storage (NAS) capability), a block-based storage server (e.g.,
used to provide storage area network (SAN) capability), a
unified storage device (e.g., one which combines NAS and
SAN capabilities), a near-line storage device, a direct
attached storage (DAS) device, a tape backup device, or
essentially any other type of data storage device. Storage
system 2200 may have a distributed architecture, or all of its
components may be integrated into a single unit. Storage
system 2200 may be implemented as part of an archive and/or
backup system such as a deduplicating storage system avail-
able from EMC® Corporation of Hopkinton, Mass.

In one embodiment, storage system 2200 includes a dedu-
plication engine 2201 interfacing one or more clients 2214
with one or more storage units 2210 storing metadata 2216
and data objects 2218. Clients 2214 may be any kinds of
clients, such as, for example, a client application, backup
software, or a garbage collector, located locally or remotely
over a network. A network may be any type of networks such
as a local area network (LAN), a wide area network (WAN)
such as the Internet, a corporate intranet, a metropolitan area
network (MAN), a storage area network (SAN), a bus, or a
combination thereof, wired and/or wireless.

Storage devices or units 2210 may be implemented locally
(e.g., single node operating environment) or remotely (e.g.,
multi-node operating environment) via an interconnect,
which may be a bus and/or a network (e.g., a storage net-
work). In one embodiment, one of storage units 2210 operates
as an active storage to receive and store external or fresh user
datafrom aclient (e.g., an end-user client or a primary storage
system associated with one or more end-user clients), while
the another one of storage units 2210 operates as a target
storage unit to periodically archive data from the active stor-
age unit according to an archiving policy or scheme. Storage
units 2210 may be, for example, conventional magnetic disks,
optical disks such as CD-ROM or DVD based storage, mag-
netic tape storage, magneto-optical (MO) storage media,
solid state disks, flash memory based devices, or any other
type of non-volatile storage devices suitable for storing large
volumes of data. Storage units 2210 may also be combina-
tions of such devices. In the case of disk storage media, the
storage units 2210 may be organized into one or more vol-
umes of redundant array of inexpensive disks (RAID). Data
stored in the storage units may be stored in a compressed form
(e.g., lossless compression: HUFFMAN coding, LEMPEL-
ZIV WELCH coding; delta encoding: a reference to a chunk
plus a difference; etc.). In one embodiment, different storage
units may use different compression methods (e.g., main or
active storage unit from other storage units, one storage unit
from another storage unit, etc.).

The metadata, such as metadata 2216, may be stored in at
least some of storage units 2210, such that files can be
accessed independent of another storage unit. Metadata of
each storage unit includes enough information to provide
access to the files it contains. In one embodiment, metadata
may include fingerprints contained within data objects 2218,
where a data object may represent a data chunk, a compres-

US 9,336,143 B1

21

sion region (CR) of one or more data chunks, or a container of
one or more CRs. Fingerprints are mapped to a particular data
object via metadata 2216, enabling the system to identify the
location of the data object containing a data chunk repre-
sented by a particular fingerprint. A fingerprint may be gen-
erated based on at least a portion of a data chunk, for example,
by applying a predetermined mathematical algorithm (e.g.,
hash function) to at least a portion of the content of the data
chunk. When an active storage unit fails, metadata contained
in another storage unit may be utilized to recover the active
storage unit. When one storage unit is unavailable (e.g., the
storage unit has failed, or is being upgraded, etc.), the system
remains up to provide access to any file not stored in the failed
storage unit. When a file is deleted, the metadata associated
with the files in the system is updated to reflect that the file has
been deleted.

In one embodiment, metadata 2216 may include a file
name, a storage unit identifier (ID) identifying a storage unit
in which the chunks associated with the file name are stored,
reconstruction information for the file using the chunks, and
any other appropriate metadata information. Metadata 2216
may further include a chunk ID, a chunk sketch, a hash of a
chunk, an encrypted hash of a chunk, random data, or any
other appropriate metadata. In some embodiments, metadata
associated with a chunk is used to identify identical and/or
similar data segments. The stored metadata enables a faster
identification of identical and/or similar data chunks as an ID
and/or sketch (e.g., a set of values characterizing the chunk)
do not need to be recomputed for the evaluation of a given
incoming data segment.

In one embodiment, a chunk ID includes one or more
deterministic functions of a data chunk, one or more hash
functions of a data chunk, random data, or any other appro-
priate data chunk ID. In various embodiments, a data chunk
sketch includes one or more deterministic functions of a data
chunk, one or more hash functions of a data chunk, one or
more functions that return the same or similar value for the
same or similar data chunks (e.g., a function that probably or
likely returns a same value for a similar data segment), or any
other appropriate data segment sketch. In various embodi-
ments, sketch function values are determined to be similar
using one or more of the following methods: numeric differ-
ence, hamming difference, locality-sensitive hashing, near-
est-neighbor-search, other statistical methods, or any other
appropriate methods of determining similarity. In one
embodiment, sketch data includes one or more data patterns
characterizing a chunk. For example, a sketch may be gener-
ated by applying one or more functions (e.g., hash functions)
on a chunk and a subset of the results of the functions per-
formed on the chunk (e.g., a number of results, for example
the ten lowest results or the ten highest results) are selected as
a sketch.

In one embodiment, a copy of the metadata is stored on a
storage unit for files stored on a storage unit so that files that
are stored on the storage unit can be accessed using only the
information stored on the storage unit. In one embodiment, a
main set of metadata information can be reconstructed by
using information of other storage units associated with the
storage system in the event that the main metadata is lost,
corrupted, damaged, etc. Metadata for a storage unit can be
reconstructed using metadata information stored on a main
storage unit or other storage unit (e.g., replica storage unit).
Metadata information further includes index information
(e.g., location information for chunks in storage units, iden-
tifying specific data objects).

In one embodiment, deduplication storage engine 2201
includes file service interface 2202, segmenter 2204, dupli-

10

15

20

25

30

35

40

45

50

55

60

65

22

cate eliminator 2206, file system control 2208, and storage
unit interface 2212. Deduplication storage engine 2201
receives afile or files (or data item(s)) via file service interface
2202, which may be part of a file system namespace 2220 of
afile system associated with the deduplication storage engine
2201. The file system namespace 2220 refers to the way files
are identified and organized in the system. An example is to
organize the files hierarchically into directories or folders,
which may be managed by directory manager 2222. File
service interface 2212 supports a variety of protocols, includ-
ing a network file system (NFS), a common Internet file
system (CIFS), and a virtual tape library interface (VTL), etc.

The file(s) is/are processed by segmenter 2204 and file
system control 2208. Segmenter 2204, also referred to as a
content store, breaks the file(s) into variable-length chunks
based on a variety of rules or considerations. For example, the
file(s) may be broken into chunks by identifying chunk
boundaries. Chunk boundaries may be determined using file
boundaries, directory boundaries, byte counts, content-based
boundaries (e.g., when a hash of data in a window is equal to
a value), or any other appropriate method of determining a
boundary. Reconstruction of a data block, data stream, file, or
directory includes using one or more references to the one or
more chunks that originally made up a data block, data
stream, file, or directory that was/were previously stored.

In some embodiments, chunks are segmented by identify-
ing chunk boundaries that are content-based—for example, a
hash function is applied to values of data within a sliding
window through the data stream or block and when the hash
function is equal to a value (or equal to one of several values)
then a chunk boundary is identified. In various embodiments,
chunk boundaries are identified using content based functions
operating on windows within a data stream or block that have
a minimum or maximum or other value or any other appro-
priate content based chunking algorithm. In various embodi-
ments, chunks include fixed-length chunks, variable length
chunks, overlapping chunks, non-overlapping chunks,
chunks with a minimum size, chunks with a maximum size, or
any other appropriate chunks. In various embodiments,
chunks include files, groups of files, directories, a portion of
a file, a portion of a data stream with one or more boundaries
unrelated to file and/or directory boundaries, or any other
appropriate chunk.

In one embodiment, file system control 2208, also referred
to as a file system manager, processes information to indicate
the chunk(s) association with a file. In some embodiments, a
list of fingerprints is used to indicate chunk(s) associated with
a file. File system control 2208 passes chunk association
information (e.g., representative data such as a fingerprint) to
index 2224. Index 2224 is used to locate stored chunks in
storage units 2210 via storage unit interface 2212. Duplicate
eliminator 2206, also referred to as a segment store, identifies
whether a newly received chunk has already been stored in
storage units 2210. In the event that a chunk has already been
stored in storage unit(s), a reference to the previously stored
chunk is stored, for example, in a chunk tree associated with
the file, instead of storing the newly received chunk. A chunk
tree of a file may include one or more nodes and each node
represents or references one of the deduplicated chunks
stored in storage units 2210 that make up the file. Chunks are
then packed by a container manager (which may be imple-
mented as part of storage unit interface 2212) into one or more
storage containers stored in storage units 2210. The dedupli-
cated chunks may be further compressed into one or more
CRs using a variation of compression algorithms, such as a
Lempel-Ziv algorithm before being stored. A container may
contain one or more CRs and each CR may contain one or

US 9,336,143 B1

23

more deduplicated chunks (also referred to deduplicated seg-
ments). A container may further contain the metadata such as
fingerprints, sketches, type of the data chunks, etc. that are
associated with the data chunks stored therein.

When a file is to be retrieved, file service interface 2202 is
configured to communicate with file system control 2208 to
identify appropriate chunks stored in storage units 2210 via
storage unit interface 2212. Storage unit interface 2212 may
be implemented as part of a container manager. File system
control 2208 communicates (e.g., via segmenter 2204) with
index 2224 to locate appropriate chunks stored in storage
units via storage unit interface 2212. Appropriate chunks are
retrieved from the associated containers via the container
manager and are used to construct the requested file. The file
is provided via interface 2202 in response to the request. In
one embodiment, file system control 2208 utilizes a tree (e.g.,
a chunk tree obtained from namespace 2220) of content-
based identifiers (e.g., fingerprints) to associate a file with
data chunks and their locations in storage unit(s). In the event
that a chunk associated with a given file or file changes, the
content-based identifiers will change and the changes will
ripple from the bottom to the top of the tree associated with
the file efficiently since the appropriate content-based identi-
fiers are easily identified using the tree structure. Note that
some or all of the components as shown as part of deduplica-
tion engine 2201 may be implemented in software (e.g.,
executable code executed in a memory by a processor), hard-
ware (e.g., processor(s)), or a combination thereof. For
example, deduplication engine 2201 may be implemented in
a form of executable instructions that can be stored in a
machine-readable storage medium, where the instructions
can be executed in a memory by a processor.

In one embodiment, storage system 2200 may be used as a
tier of storage in a storage hierarchy that comprises other tiers
of'storage. One or more tiers of storage in this hierarchy may
utilize different kinds of storage devices and/or may be opti-
mized for different characteristics such as random update
performance. Files are periodically moved among the tiers
based on data management policies to achieve a cost-effective
match to the current storage requirements of the files. For
example, a file may initially be stored in a tier of storage that
offers high performance for reads and writes. As the file ages,
it may be moved into a tier of storage according to one
embodiment of the invention. In various embodiments, tiers
include different storage technologies (e.g., tape, hard drives,
semiconductor-based memories, optical drives, etc.), differ-
ent locations (e.g., local computer storage, local network
storage, remote network storage, distributed storage, cloud
storage, archive storage, vault storage, etc.), or any other
appropriate storage for a tiered data storage system.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations lead-
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and

10

15

20

25

30

35

40

45

50

55

60

65

24

processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

Embodiments of the invention also relate to an apparatus
for performing the operations herein. Such a computer pro-
gram is stored in a non-transitory computer readable medium.
A machine-readable medium includes any mechanism for
storing information in a form readable by a machine (e.g., a
computer). For example, a machine-readable (e.g., computer-
readable) medium includes a machine (e.g., a computer) read-
able storage medium (e.g., read only memory (“ROM”), ran-
dom access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory devices).

The processes or methods depicted in the preceding figures
may be performed by processing logic that comprises hard-
ware (e.g. circuitry, dedicated logic, etc.), software (e.g.,
embodied on a non-transitory computer readable medium), or
acombination of both. Although the processes or methods are
described above in terms of some sequential operations, it
should be appreciated that some of the operations described
may be performed in a different order. Moreover, some opera-
tions may be performed in parallel rather than sequentially.

Embodiments of the present invention are not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of embodiments of
the invention as described herein.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to specific exemplary
embodiments thereof. It will be evident that various modifi-
cations may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
following claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense.

What is claimed is:
1. A computer-implemented method for indexing content
stored in a cache memory device, the method comprising:

maintaining a file index having a plurality of extent entries,
each extent entry corresponding to one of a plurality of
file extents stored in a cache memory device that caches
data stored in a persistent storage device of a dedupli-
cated storage system, wherein each extent entry maps a
particular data region of a particular file to a storage
location of the cache memory device storing a corre-
sponding file extent;

maintaining a fingerprint index having a plurality of fin-
gerprint entries, each mapping a fingerprint to a data
region of a file indexed in the file index, wherein each
fingerprint indexed in the fingerprint index is retrieved
from metadata stored in the persistent storage device of
the storage system when one or more corresponding data
chunks were accessed; and

deduplicating and accessing the file extents stored in the
cache memory device using the file index and the fin-
gerprint index, wherein the file index is used to deter-
mine whether the particular data region of the particular
file has been previously stored in the cache memory
device, and wherein the fingerprint index is used to
determine whether the particular data region is shared by
another data region of the particular file or shared by
another file and the particular data region has been stored

US 9,336,143 B1

25

in the cache memory device during access of another
data region of the particular file or another file.

2. The method of claim 1, further comprising:

receiving a first request to read a first region of a first file,

the first request including a first file handle representing
the first file and a first offset;

looking up in the file index based on the first file handle and

the first offset;

if an extent entry is found that matches the first file handle

and the first offset, retrieving and returning a first extent
from a corresponding storage location of the first extent
entry.

3. The method of claim 2, further comprising:

if no extent entry matching the first file handle and the first

offset is found in the file index, reading one or more data
chunks from the deduplicated storage system to serve
the first request;
caching in the cache memory device at least some of the
data chunks representing the first region of the first file;

creating a new extent entry in the file index, the new extent
entry including the first file handle, the first offset, and a
storage location of the cache memory device that caches
the first region of the first file.

4. The method of claim 3, further comprising:

prior to reading one or more data chunks from the dedu-

plicated storage system, retrieving fingerprints associ-
ated with a file region corresponding to the first file
handle and the first offset; and

looking up in the fingerprint index based on the retrieved

fingerprints to determine whether the data chunks have
been cached in the cache memory device.

5. The method of claim 3, further comprising creating a
new fingerprint entry in the fingerprint index, the new finger-
print entry including a fingerprint of the one or more data
chunks retrieved from the metadata of the deduplicated stor-
age system.

6. The method of claim 1, further comprising:

receiving a second request to read a second region of a

second file, the second request including a fingerprint
that is extracted from some levels of atree of fingerprints
representing the second region of the second file stored
in the deduplicated storage system;

looking up in the fingerprint index based on the fingerprint

in the second request;

if a fingerprint entry matching the fingerprint is found,

retrieving a second file handle and a second offset from
the matching fingerprint entry;

looking up in the file index based on the second file handle

and the second offset to determine a second storage
location of the cache memory device; and

retrieving and returning at least one extent from the cache

memory device from the second storage location.

7. The method of claim 6, wherein a new entry is added in
the file index which maps the requested region to the second
file and offset determined in the fingerprint index.

8. The method of claim 1, wherein each extent entry of the
file index further includes a portion of a fingerprint to refer-
ence to a related fingerprint entry of the fingerprint index.

9. The method of claim 1, wherein each of the file extents
stored in the cache memory device includes a file handle and
an offset representing a file region of a file associated with the
file extent.

10. The method of claim 8, further comprising:

receiving a request to evict a third file extent stored in the

cache memory device;

extract a third file handle and a third offset from the third

file extent;

10

15

20

25

30

35

40

45

55

60

26
looking up and removing an extent entry in the file index
that matches the third file handle and the third offset; and
looking up and removing a fingerprint entry in the finger-
print index that matches the third file handle and the third
offset.
11. A storage system, comprising:
one or more storage units to store a plurality of files;
a cache memory device to cache at least some data blocks
of at least some of the files; and
a cache manager executed by the processor configured to
maintain a file index having a plurality of extent entries,
each extent entry corresponding to one of a plurality
of file extents stored in the cache memory device that
caches data stored in the storage units, wherein each
extent entry maps a particular data region of a particu-
lar data object to a storage location of the cache
memory device storing a corresponding file extent,
maintain a fingerprint index having a plurality of finger-
print entries, each mapping a fingerprint to a data
region of a file indexed in the file index, wherein each
fingerprint indexed in the fingerprint index is
retrieved from metadata stored in the storage units
when one or more corresponding data chunks were
accessed, and
deduplicate and access the file extents stored in the cache
memory device using the file index and the fingerprint
index, wherein the file index is used to determine
whether the particular data region of the particular file
has been previously stored in the cache memory
device, and wherein the fingerprint index is used to
determine whether the particular data region is shared
by another data region of the particular file or shared
by another file and the particular data region has been
stored in the cache memory device during access of
another data region of the particular file or another
file.
12. The storage system of claim 11, wherein the cache

manager is further configured to:

receive a first request to read a first region of a first file, the
first request including a first file handle representing the
first file and a first offset;

look up in the file index based on the first file handle and the
first offset; and

if an extent entry is found that matches the first file handle
and the first offset, retrieve and return a first extent from
a corresponding storage location of the first extent entry.

13. The storage system of claim 12, wherein the cache

manager is further configured to:

if no extent entry matching the first file handle and the first
offset is found in the file index, read one or more data
chunks from the deduplicated storage system to serve
the first request;

cache in the cache memory device at least some of the data
chunks representing the first region of the first file; and

create a new extent entry in the file index, the new extent
entry including the first file handle, the first offset, and a
storage location of the cache memory device that caches
the first region of the first file.

14. The storage system of claim 13, wherein the cache

manager is further configured to:

prior to reading one or more data chunks from the dedu-
plicated storage system, retrieve fingerprints associated
with a file region corresponding to the first file handle
and the first offset; and

look up in the fingerprint index based on the retrieved
fingerprints to determine whether the data chunks have
been cached in the cache memory device.

US 9,336,143 B1

27

15. The storage system of claim 13, wherein the cache
manager is further configured to create a new fingerprint entry
in the fingerprint index, the new fingerprint entry including a
fingerprint of the one or more data chunks retrieved from the
metadata of the deduplicated storage system.

16. The storage system of claim 11, wherein the cache
manager is further configured to:

receive a second request to read a second region of a second

file, the second request including a fingerprint that is
extracted from some levels of a tree of fingerprints rep-
resenting the second region of the second file stored in
the deduplicated storage system;

look up in the fingerprint index based on the fingerprint in

the second request;

if a fingerprint entry matching the fingerprint is found,

retrieve a second file handle and a second offset from the
matching fingerprint entry;

look up in the file index based on the second file handle and

the second offset to determine a second storage location
of the cache memory device; and

retrieve and returning at least one extent from the cache

memory device from the second storage location.

17. A non-transitory computer-readable storage medium
having instructions stored therein, which when executed by a
processor, cause the processor to perform operations for
indexing content stored in a cache memory device, the opera-
tions comprising:

maintaining a file index having a plurality of extent entries,

each extent entry corresponding to one of a plurality of
file extents stored in a cache memory device that caches
data stored in a persistent storage device of a dedupli-
cated storage system, wherein each extent entry maps a
particular data region of a particular data object to a
storage location of the cache memory device storing a
corresponding file extent;

maintaining a fingerprint index having a plurality of fin-

gerprint entries, each mapping a fingerprint to a data
region of a file indexed in the file index, wherein each
fingerprint indexed in the fingerprint index is retrieved
from metadata stored in the persistent storage device of
the storage system when one or more corresponding data
chunks were accessed; and

deduplicating and accessing the file extents stored in the

cache memory device using the file index and the fin-
gerprint index, wherein the file index is used to deter-
mine whether the particular data region of the particular
file has been previously stored in the cache memory
device, and wherein the fingerprint index is used to
determine whether the particular data region is shared by
another data region of the particular file or shared by
another file and the particular data region has been stored
in the cache memory device during access of another
data region of the particular file or another file.

18. The non-transitory computer-readable storage medium
of claim 17, wherein the operations further comprise:

10

15

25

30

35

40

45

28

receiving a first request to read a first region of a first file,
the first request including a first file handle representing
the first file and a first offset;

looking up in the file index based on the first file handle and

the first offset;

if an extent entry is found that matches the first file handle

and the first offset, retrieving and returning a first extent
from a corresponding storage location of the first extent
entry.

19. The non-transitory computer-readable storage medium
of claim 18, wherein the operations further comprise:

if no extent entry matching the first file handle and the first

offset is found in the file index, reading one or more data
chunks from the deduplicated storage system to serve
the first request;

caching in the cache memory device at least some of the

data chunks representing the first region of the first file;
and

creating a new extent entry in the file index, the new extent

entry including the first file handle, the first offset, and a
storage location of the cache memory device that caches
the first region of the first file.

20. The non-transitory computer-readable storage medium
of claim 19, wherein the operations comprise:

prior to reading one or more data chunks from the dedu-

plicated storage system, retrieving fingerprints associ-
ated with a file region corresponding to the first file
handle and the first offset; and

looking up in the fingerprint index based on the retrieved

fingerprints to determine whether the data chunks have
been cached in the cache memory device.

21. The non-transitory computer-readable storage medium
of'claim 19, wherein the operations further comprise creating
a new fingerprint entry in the fingerprint index, the new fin-
gerprint entry including a fingerprint of the one or more data
chunks retrieved from the metadata of the deduplicated stor-
age system.

22. The non-transitory computer-readable storage medium
of claim 17, wherein the operations further comprise:

receiving a second request to read a second region of a

second file, the second request including a fingerprint
that is extracted from some levels of atree of fingerprints
representing the second region of the second file stored
in the deduplicated storage system;

looking up in the fingerprint index based on the fingerprint

in the second request;

if a fingerprint entry matching the fingerprint is found,

retrieving a second file handle and a second offset from
the matching fingerprint entry;

looking up in the file index based on the second file handle

and the second offset to determine a second storage
location of the cache memory device; and

retrieving and returning at least one extent from the cache

memory device from the second storage location.

#* #* #* #* #*

